
/6)�%DWFK�$GPLQLVWUDWRU¶V�*XLGH

Sixth Edition, August 1998

3ODWIRUP�&RPSXWLQJ�&RUSRUDWLRQ

/6)�%DWFK�$GPLQLVWUDWRU¶V�*XLGH

Copyright © 1994-1998 Platform Computing Corporation
All rights reserved.

This document is copyrighted. This document may not, in whole or part, be copied, duplicated,
reproduced, translated, electronically stored, or reduced to machine readable form without prior
written consent from Platform Computing Corporation.

Although the material contained herein has been carefully reviewed, Platform Computing
Corporation does not warrant it to be free of errors or omissions. Platform Computing
Corporation reserves the right to make corrections, updates, revisions or changes to the
information contained herein.

UNLESS PROVIDED OTHERWISE IN WRITING BY PLATFORM COMPUTING
CORPORATION, THE PROGRAM DESCRIBED HEREIN IS PROVIDED AS IS WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
ANY LOST PROFITS OR LOST SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO
USE THIS PROGRAM.

LSF Base, LSF Batch, LSF JobScheduler, LSF MultiCluster, LSF Analyzer, LSF Make, LSF Parallel,
Platform Computing, and the Platform Computing and LSF logos are trademarks of Platform
Computing Corporation.

Other products or services mentioned in this document are identified by the trademarks or
service marks of their respective companies or organizations.

Printed in Canada
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH LLL

5HYLVLRQ�,QIRUPDWLRQ�IRU�/6)�%DWFK�$GPLQLVWUDWRU¶V�*XLGH

(GLWLRQ 'HVFULSWLRQ

First This document describes LSF 2.0. Based on Chapters 2 through 7 of the LSF User’s
and Administrator’s Guide, Second Edition.

Second Revised to incorporate the LSF 2.1 Release Notes.

Third Revised to reflect the changes in LSF 2.2.

Fourth Revised and redesigned to describe LSF Suite 3.0.

Fifth Revised and redesigned to describe LSF Suite 3.1, and is based on the LSF
Administrator’s Guide, fourth Edition.

Sixth Revised to reflect the changes in LSF Suite 3.2.
LY

&RQWHQWV

3UHIDFH�� [LLL
Audience .xiii
LSF Suite 3.2 .xiii

LSF Enterprise Edition .xiv
LSF Standard Edition .xiv

Related Documents . xv
Online Documentation. xv

Technical Assistance . xv

����/6)�%DWFK�&RQFHSWV��� �
LSF Base. 1
LSF Batch. 2
LSF MultiCluster . 2
Definitions. 3

Jobs, Tasks, and Commands . 3
Hosts, Machines, and Computers . 3
Clusters. 3
Local and Remote Hosts . 4
Submission, Master, and Execution Hosts . 4

Fault Tolerance . 5
Shared Directories and Files. 6

Shared User Directories . 7
Executables and the PATH Environment Variable . 7
Time Windows . 8

Resource and Resource Requirements . 8
Shared Resources . 9

Remote Execution Control . 10
User Authentication Methods. 10
How LSF Chooses Authentication Methods. 14
Host Authentication Methods . 15
User Account Mapping . 16

Job Starters . 16
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH Y

&RQWHQWV
Command-Level Job Starters . 17
Queue-Level Job Starters . 17

Load Sharing with LSF Base. 18
How LSF Batch Schedules Jobs . 19

Job States . 20
Eligible Hosts. 22
Dispatch Windows . 23
Run Windows . 23
Resource Requirements . 24
Host Lists . 24
Host Load Levels . 24
Order of Job Dispatching. 25
Job Slot Limits . 26
User Job Slot Limits . 27
Host Job Slot Limits . 28
Queue Job Slot Limits. 29
Resource Limits and Resource Usage . 30
Scheduling Policies . 31
Suspending Jobs . 33
Resuming Suspended Jobs . 35
User Suspended Jobs . 35
Interactive Batch Job Support . 36

Pre- and Post-execution Commands. 36
Checkpointing and Migration . 37

Job Migration. 38
Job Control Actions . 38
Resource Reservation . 39
Processor Reservation . 39
Remote File Access. 40
Job Requeue . 41
External Submission and Execution Executables . 42
External Load Indices and ELIM . 43
External Group Membership Definition. 43

����0DQDJLQJ�/6)�%DVH ���
Managing Error Logs. 45

LSF Daemon Error Log . 45
FLEXlm Log. 46

Controlling LIM and RES Daemons . 47
Checking Host Status . 47
YL

Restarting LIM and RES. 48
Remote Startup of LIM and RES. 48
Shutting down LIM and RES . 49
Locking and Unlocking Hosts . 49

Managing LSF Configuration. 50
Overview of LSF Configuration Files . 50
Configuration File Formats . 52
Example Configuration Files. 54
Changing LIM Configuration . 55

Reconfiguring an LSF Cluster . 62
External Resource Collection . 63

Restrictions . 64
Writing an External LIM . 64
Overriding Built-In Load Indices . 66

LIM Policies . 66
Tuning CPU Factors . 68
Tuning LIM Load Thresholds . 69
Cluster Monitoring with LSF . 71
LSF License Management . 72

How FLEXlm Works . 72
Updating an LSF License . 75
Changing the FLEXlm Server TCP Port . 75
Modifying LSF Products and Licensing . 76

����0DQDJLQJ�/6)�%DWFK��
Managing LSF Batch Logs . 79

LSF Batch Accounting Log . 80
LSF Batch Event Log. 80

Duplicate Event Logging . 81
Configuring Duplicate Event Logging . 81
How Duplicate Event Logging Works . 81

Controlling LSF Batch Servers . 82
LSF Batch System Status . 83
Remote Start-up of sbatchd . 84
Restarting sbatchd . 85
Shutting Down LSF Batch Daemons . 85
Opening and Closing of Batch Server Hosts . 86

Controlling LSF Batch Queues. 86
bqueues — Queue Status. 86
Opening and Closing Queues. 87
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH YLL

&RQWHQWV
Activating and Inactivating Queues . 87
Managing LSF Batch Configuration . 88

Adding a Batch Server Host . 89
Removing a Batch Server Host . 89
Adding a Batch Queue. 90
Removing a Batch Queue . 90

Validating Job Submissions . 91
Controlling LSF Batch Jobs . 96

Moving Jobs — bswitch, btop, and bbot . 96
Signalling Jobs — bstop, bresume, and bkill 97

Forcing Job Execution — brun -f . 98
Managing an LSF Cluster Using xlsadmin . 99

xlsadmin Management Mode . 100
xlsadmin Configuration Mode. 102

����7XQLQJ�/6)�%DWFK �� ���
Tuning LSF Batch . 107

Controlling Interference via Load Conditions . 108
Understanding Suspended Jobs . 111
Controlling Fairshare . 113
Hierarchical Fairshare . 117
Understanding How Fairshare Works . 119
Job Dispatching According to Fairshare . 120

Limits and Windows . 121
Dispatch and Run Windows . 121
Controlling Job Slot Limits . 122
Resource Limits. 122

Reservation Based Scheduling . 122
Resource Reservation . 122
Processor Reservation and Backfilling . 123

Controlling Job Execution. 126
Understanding Job Execution Environment. 126

Environment Variable Handling . 128
NICE Value . 129
Pre-execution and Post-execution commands . 129
Queue-Level Job Starters . 129

Using Licensed Software with LSF Batch. 131
Host Locked Licenses. 131
Host Locked Counted Licenses . 131
Floating Licenses. 132
YLLL

Example LSF Batch Configuration Files . 136
Example Queues . 136
Example lsb.hosts file. 140

����0DQDJLQJ�/6)�0XOWL&OXVWHU�� ���
What is LSF MultiCluster? . 143

Enabling MultiCluster Functionalities. 144
The lsf.shared File . 145
The lsf.cluster.cluster File. 146
Root Access . 148

LSF Batch Configuration. 148
Remote-Only MultiCluster Queues . 149

Inter-cluster Load and Host Information Sharing . 150
Running Interactive Jobs on Remote Clusters . 152
Distributing Batch Jobs Across Clusters . 153
Account Mapping Between Clusters. 155

User Level Account Mapping . 156
System Level Account Mapping. 157

����/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH��� ���
The lsf.conf File . 161
The lsf.shared File . 173

Clusters. 173
Host Types . 174
Host Models. 174
Resources . 175

The lsf.cluster.cluster File . 178
Parameters . 178
LSF Administrators . 181
Hosts . 182

Resource Map . 185
The lsf.task and lsf.task.cluster Files . 187
The hosts File . 188
The lsf.sudoers File . 189

����/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH ��� ���
The lsb.params File . 193

Parameters . 193
Handling Cray NQS Incompatibilities . 197

The lsb.users File . 198
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH L[

&RQWHQWV
UNIX/NT User Groups . 198
LSF Batch User Groups . 198
Share Tree Defined in User Groups . 199
External User Groups. 200
User and Group Job Slot Limits . 200

The lsb.hosts File . 202
Host Section . 202
Host Groups . 205
External Host Groups. 206
Host Partitions. 206

The lsb.queues File . 208
General Parameters . 208
Processor Reservation for Parallel Jobs . 211
Backfill Scheduling . 211
Deadline Constraint Scheduling. 212
Flexible Expressions for Queue Scheduling . 213
Load Thresholds . 216
Resource Limits. 217
Eligible Hosts and Users . 220
Scheduling Policy . 221
Migration . 224
Queue-Level Pre-/Post-Execution Commands . 224
Job Starter. 227
Configurable Job Control Actions . 228
Automatic Job Requeue . 231
Exclusive Job Requeue . 232
Default Host Specification for CPU Speed Scaling 232
NQS Forward Queues . 233

Queue Level Checkpoint and Rerun. 234
The lsb.nqsmaps File . 235

Hosts . 235
Users . 237

$���7URXEOHVKRRWLQJ�DQG�(UURU�0HVVDJHV�� ���
Error Log Messages . 239

Finding the Error Logs . 239
Shared File Access . 240

Shared Files Across UNIX and NT. 241
Common LSF Base Problems . 241

LIM Dies Quietly. 241
[

LIM Unavailable . 241
RES Does Not Start . 242
User Permission Denied . 242
Non-uniform File Name Space . 243

Common LSF Batch Problems . 244
Batch Daemons Die Quietly . 244
sbatchd Starts But mbatchd Does Not. 244
Host Not Used By LSF Batch . 244

Error Messages . 245
General Errors . 245
Configuration Errors . 248
LIM Messages . 249
RES Messages . 251
LSF Batch Messages . 252

%���/6)�'LUHFWRULHV �� ���

&���6DPSOH�6\VWHP�6XSSRUW ��� ���
IRIX 6 Processor Sets . 257

Time-Based Processor Allocation . 258
User-Based Processor Allocation . 259
Other Situations . 259

Support for Solaris Processor Sets . 260
Time-Based Processor Allocation . 260
User-Based Processor Allocation . 262
Other Situations . 263

IBM SP-2 Support. 263
Support for HP Exemplar Technical Servers . 265

Adding Load Indices Definitions . 266
Adding Queue Definitions . 267

Configuring NQS Interoperation. 269
Registering LSF with NQS. 270
lsb.nqsmaps . 271
Configuring Queues for NQS jobs . 272
Handling Cray NQS Incompatibilities . 273

Support for Atria ClearCase. 275
Using LSF Without Shared File Systems . 277

'���/6)�RQ�:LQGRZV�17 �� ���
Requirements . 279
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH [L

&RQWHQWV
Recommended. 279
Differences Between LSF for UNIX and NT . 279
File Permissions . 281
Mail . 282
The cmd.exe Program . 282
Heterogeneous NT/UNIX Environments . 283

User Accounts . 283
Configuration Files . 284
Environment Variables . 284
Cross-Platform Daemon Startup . 285
Signal Conversion. 285

Starting Services and Daemons . 286
Using LSF . 287
Miscellaneous . 287

(���7KH�/6)�6103�$JHQW �� ���
About the Agent. 289

Requirements. 289
Distribution . 290

Starting the Agent . 290
Structure of the LSF MIB. 291

The lsfHosts MIB Group . 291
The lsfResources MIB Group . 291
The lsfBatch MIB Group . 292

Optional Configuration of the Agent . 292

,QGH[�� ���
[LL

3UHIDFH

$XGLHQFH

In this book, you will find all the information you need to configure and maintain your
LSF Base, LSF Batch, or LSF MultiCluster installation. This guide assumes you have
knowledge of common system administration tasks such as exporting and mounting
Network File System (NFS) partitions.

The focus of this guide is the administration of LSF Base, LSF Batch, and LSF
MultiCluster, and as such is intended for LSF cluster administrators who manage LSF
Base, LSF Batch, and LSF MultiCluster. Users who wish to understand the details of
LSF operation should also read this guide.

It is assumed that you have already read the LSF Installation Guide and installed one or
more products from the LSF Suite at your site.

/6)�6XLWH����

LSF is a suite of workload management products including the following:

LSF Batch is a batch job processing system for distributed and heterogeneous
environments, which ensures optimal resource sharing.

LSF JobScheduler is a distributed production job scheduler that integrates
heterogeneous servers into a virtual mainframe or virtual supercomputer
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH [LLL

3UHIDFH
LSF MultiCluster supports resource sharing among multiple clusters of computers
using LSF products, while maintaining resource ownership and cluster autonomy.

LSF Analyzer is a graphical tool for comprehensive workload data analysis. It
processes cluster-wide job logs from LSF Batch and LSF JobScheduler to produce
statistical reports on the usage of system resources by users on different hosts through
various queues.

LSF Parallel is a software product that manages parallel job execution in a production
networked environment.

LSF Make is a distributed and parallel Make based on GNU Make that simultaneously
dispatches tasks to multiple hosts.

LSF Base is the software upon which all the other LSF products are based. It includes
the network servers (LIM and RES), the LSF API, and load sharing tools.

There are two editions of the LSF Suite:

/6)�(QWHUSULVH�(GLWLRQ

Platform’s LSF Enterprise Edition provides a reliable, scalable means for organizations
to schedule, analyze, and monitor their distributed workloads across heterogeneous
UNIX and Windows NT computing environments. LSF Enterprise Edition includes all
the features in LSF Standard Edition (LSF Base and LSF Batch), plus the benefits of LSF
Analyzer and LSF MultiCluster.

/6)�6WDQGDUG�(GLWLRQ

The foundation for all LSF products, Platform’s Standard Edition consists of two
products, LSF Base and LSF Batch. LSF Standard Edition offers users robust load
sharing and sophisticated batch scheduling across distributed UNIX and Windows NT
computing environments.
xiv

5HODWHG�'RFXPHQWV

The following guides are available from Platform Computing Corporation:

LSF Installation Guide
LSF Batch Administrator’s Guide
LSF Batch Administrator’s Quick Reference
LSF Batch User’s Guide
LSF Batch User’s Quick Reference
LSF JobScheduler Administrator’s Guide
LSF JobScheduler User’s Guide
LSF Analyzer User’s Guide
LSF Parallel User’s Guide
LSF Programmer’s Guide

2QOLQH�'RFXPHQWDWLRQ

• Man pages (accessed with the man command) for all commands
• Online help available through the Help menu for the xlsbatch, xbmod, xbsub,

xbalarms, xbcal and xlsadmin applications.

7HFKQLFDO�$VVLVWDQFH

If you need any technical assistance with LSF, please contact your reseller or Platform
Computing’s Technical Support Department at the following address:

LSF Technical Support
Platform Computing Corporation
3760 14th Avenue
Markham, Ontario
Canada L3R 3T7

Tel: +1 905 948 8448
Toll-free: 1-87PLATFORM (1-877-528-3676)
Fax: +1 905 948 9975
Electronic mail: support@platform.com
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH [Y

3UHIDFH
Please include the full name of your company.

You may find the answers you need from Platform Computing Corporation’s home
page on the World Wide Web. Point your browser to www.platform.com.

If you have any comments about this document, please send them to the attention of
LSF Documentation at the address above, or send email to doc@platform.com.
xvi

�� /6)�%DWFK�&RQFHSWV

LSF is a suite of workload management products that schedule, monitor, and analyze
the workload for a network of computers. LSF Batch allows you, as a system
administrator, to control and manage all of your computing resources effectively and
efficiently.

LSF consists of a set of daemons that provide workload management services across
the whole cluster, an API that allows access to such services at the procedure level, and
a suite of tools or utilities that end users can use to access such services at the command
or GUI level.

This chapter introduces important LSF concepts related to the design and operation of
LSF Batch.

/6)�%DVH

LSF Base provides basic load-sharing services across a heterogeneous network of
computers. It is the base software upon which all other LSF products are built. It
provides services such as resource information, host selection, placement advice,
transparent remote execution, and remote file operation.

LSF Base includes Load Information Manager (LIM), Remote Execution Server (RES),
the LSF Base API, and LSF Base Tools that allow the use of the LSF Base system to run
simple load-sharing applications and lstcsh, a load sharing enabled C shell.

An LSF Base cluster contains a network of computers running LIM, RES, and
associated tools. The cluster is defined by LSF cluster configuration files, which are
read by LIM. LIM then provides the cluster configuration information, together with
all other dynamic information to the rest of the LSF Base system, as well as to other LSF
products.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH �

/6)�%DWFK�&RQFHSWV�
LSF Base system API allows users to write their own load-sharing applications on top
of the LSF Base system.

/6)�%DWFK

LSF Batch is a distributed batch queuing system built on top of the LSF Base. The
services provided by LSF Batch are extensions to the LSF Base system services. LSF
Batch makes a computer network a network computer. It has all the features of a
mainframe batch job processing system, as well as load balancing and policy-driven
resource allocation control. LSF Batch implements sophisticated job scheduling and
resource control for batch workload.

LSF Batch relies on services provided by the LSF Base system. It makes use of the
resource and load information from the LIM to perform load balancing. LSF Batch also
uses the cluster configuration information from LIM and follows the master election
service provided by LIM. LSF Batch uses RES for interactive batch job execution and
uses the remote file operation service provided by RES for file transfer. LSF Batch
includes a Master Batch Daemon (mbatchd) running on the master host and a slave
Batch Daemon (sbatchd) running on each batch server host.

LSF Batch has its own configuration files, it also uses the cluster configuration from the
LSF Base system.

/6)�0XOWL&OXVWHU

LSF MultiCluster extends the capabilities of LSF Base and LSF Batch by sharing the
resources of an organization across multiple cooperating clusters of computers. Load-
sharing happens not only within the clusters, but also among them. Resource
ownership and autonomy is enforced, non-shared user accounts and file systems are
supported, and communication limitations among the clusters are also considered in
job scheduling.
�

�

'HILQLWLRQV

In the rest of this document, LSF refers to LSF Base, Batch, and Multicluster, unless
otherwise explicitly mentioned.

-REV��7DVNV��DQG�&RPPDQGV

This document uses the terms job, task, and command to refer to one or more processes
invoked together to perform some action. The terms are interchangeable, though task
is more often used to refer to interactive commands and job is more often used for
commands run using the batch system.

Each command can be a single process, or it can be a group of cooperating processes.
LSF creates a new process group for each command it runs, and the job control
mechanisms act on all processes in the process group.

+RVWV��0DFKLQHV��DQG�&RPSXWHUV

This document uses the terms host, machine, and computer to refer to a single computer,
which may have more than one processor. An informal definition is as follows: if it
runs a single copy of the operating system and has a unique Internet (IP) address, it is
one computer. More formally, LSF treats each process queue as a separate machine. A
multiprocessor computer with a single process queue is considered a single machine,
while a box full of processors that each have their own process queue is treated as a
group of separate machines.

&OXVWHUV

A cluster is a group of hosts that provide shared computing resources. Hosts can be
grouped into clusters in a number of ways. A cluster could contain:

• All the hosts in a single administrative group

• All the hosts on one file server or sub-network

• Hosts that perform similar functions.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH �

/6)�%DWFK�&RQFHSWV�
If you have hosts of more than one type, it is often convenient to group them together
in the same cluster. LSF allows you to use these hosts transparently, so applications
that run on only one host type are available to the entire cluster.

/RFDO�DQG�5HPRWH�+RVWV

When LSF runs a remote command, two hosts are involved. The host where the remote
execution is initiated is the local host. The host where the command is executed is the
remote host. For example, in this sequence:

hostA% lsrun -v uname
<<Execute uname on remote host hostD>>
HP-UX

Here, the local host is hostA, and the remote host is hostD. Note that it is possible for the
local and remote hosts to be the same.

6XEPLVVLRQ��0DVWHU��DQG�([HFXWLRQ�+RVWV

When LSF Batch runs a job, three hosts are involved. The host from which the job is
submitted is the submission host. The job information is sent to the master host, which is
the host where the master LIM and mbatchd are running. The job is run on the
execution host. It is possible for more than one of these to be the same host.

The master host is displayed by the lsid command:

% lsid

LSF 3.2, Aug 1, 1998
Copyright 1992-1998 Platform Computing Corporation
My cluster name is test_cluster
My master name is hostA

The following example shows the submission and execution hosts for a batch job:
�

�

hostD% bsub sleep 60
Job <1502> is submitted to default queue <normal>.
hostD% bjobs 1502
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
1502 user2 RUN normal hostD hostB sleep 60 Nov 22 14:03

The master host is hostA, as shown by the lsid command. The submission host is
hostD, and the execution host is hostB.

)DXOW�7ROHUDQFH

LSF has a number of features that support fault tolerance. LSF can tolerate the failure
of any host or group of hosts in the cluster.

The LSF master host is chosen dynamically. If the current master host becomes
unavailable, another host takes over automatically. The master host selection is based
on the order in which hosts are listed in the lsf.cluster.cluster file. If the first
host in the file is available, that host acts as the master. If the first host is unavailable,
the second host takes over, and so on. LSF might be unavailable for a few minutes
while hosts are waiting to be contacted by the new master.

If the cluster is partitioned by a network failure, a master LIM takes over on each side
of the partition. Interactive load-sharing remains available, as long as each host still has
access to the LSF executables.

Fault tolerance in LSF Batch depends on the event log file, lsb.events, which is kept
on the primary file server. Every event in the system is logged in this file, including all
job submissions and job and host status changes. If the master host becomes
unavailable, a new master is chosen by the LIMs. The slave batch daemon sbatchd on
the new master starts a new master batch daemon mbatchd. The new mbatchd reads
the lsb.events file to recover the state of the system.

For sites not wanting to rely solely on a central file server for recovery information, LSF
can be configured to maintain a duplicate event log by keeping a replica of the
lsb.events file. The replica is stored on the file server, and used if the primary copy
is unavailable. When using LSF’s duplicate event log function, the primary event log
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH �

/6)�%DWFK�&RQFHSWV�
is stored on the first master host, and re-synchronized with the replicated copy when
the host recovers.

If the network is partitioned, only one of the partitions can access the lsb.events
log, so batch services are only available on one side of the partition. A lock file is used
to guarantee that only one mbatchd is running in the cluster.

Running jobs are managed by the sbatchd on each batch server host. When the new
mbatchd starts up it polls the sbatchd daemons on each host and finds the current
status of its jobs. If the sbatchd fails but the host is still running, jobs running on the
host are not lost. When the sbatchd is restarted it regains control of all jobs running
on the host.

If an LSF server host fails, jobs running on that host are lost. No other jobs are affected.
LSF Batch jobs can be submitted so that they are automatically rerun from the
beginning or restarted from a checkpoint on another host if they are lost because of a
host failure.

If all of the hosts in a cluster go down, all running jobs are lost. When a host comes back
up and takes over as master, it reads the lsb.events file to get the state of all batch
jobs. Jobs that were running when the systems went down are assumed to have exited,
and email is sent to the submitting user. Pending jobs remain in their queues, and are
scheduled as hosts become available.

6KDUHG�'LUHFWRULHV�DQG�)LOHV

LSF is designed for networks where all hosts have shared file systems, and files have
the same names on all hosts.

On UNIX systems, LSF supports the Network File System (NFS), the
Andrew File System (AFS), and DCE’s Distributed File System (DFS). NFS
file systems can be mounted permanently or on demand using
automount.

On Windows NT, directories containing LSF files can be shared amongst
hosts from an NT server machine.

UNIX

NT
�

�

LSF includes support for copying user data to the execution host before running a
batch job, and for copying results back after the job executes. In networks where the file
systems are not shared, this can be used to give remote jobs access to local data.

For more information about running LSF on networks where no shared file space is
available, see ‘Using LSF Without Shared File Systems’ on page 277.

6KDUHG�8VHU�'LUHFWRULHV

To provide transparent remote execution, LSF commands determine the user’s current
working directory and use that directory on the remote host. For example, if the
command cc file.c is executed remotely, cc only finds the correct file.c if the
remote command runs in the same directory.

The LSF Batch automatically creates an .lsbatch subdirectory in the user’s home
directory on the execution host. This directory is used to store temporary input and
output files for jobs.

([HFXWDEOHV�DQG�WKH�PATH�(QYLURQPHQW�9DULDEOH

Search paths for executables (the PATH environment variable) are passed to the remote
execution host unchanged. In mixed clusters, LSF works best when the user binary
directories (for example, /usr/bin, /usr/local/bin) have the same path names on
different host types. This makes the PATH variable valid on all hosts.

If your LSF user binaries are NFS mounted, place all binaries in a shared file system
under /usr/local/lsf/mnt (or some similar name), and then make a symbolic link
from /usr/local/bin to /usr/local/lsf/mnt/bin/type for the correct host
type on each machine. These are the default install directories.

LSF configuration files are normally stored in a shared directory. This makes
administration easier. There is little performance penalty for this, because the
configuration files are not frequently read.

For more information on LSF installation directories see ‘LSF Directories’ on page 115 of
the LSF Installation Guide.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH �

/6)�%DWFK�&RQFHSWV�
7LPH�:LQGRZV

Time windows are an important concept in LSF. Time windows are a useful means to
control resource access such that you can disable access to some resources during
certain times. A time window is the basic building block for configuring dispatch
windows and run windows.

A time window is specified by two time values separated by ‘-’. Each time value is
specified by up to three fields are shown below:

[day:]hour[:min]

If only one field exists, it is assumed to be hour; if two fields exist, they are assumed to
be hour:min. Days are numbered from 0 (Sunday) to 6 (Saturday). Hours are
numbered from 0 to 23, and minutes from 0 to 59.

In a time window time1-time2, if neither time1 nor time2 specifies a day, the time
window applies to every day of the week. If time1 is greater than time2, the time
window applies from time1 of each day until time2 of the following day.

If either time1 or time2 specifies a day, the other must specify a day. If time1 is on a later
day of the week than time2, or is a later time on the same day, then the time window
applies from time1 of each week until time2 of the following week.

A dispatch or run window is specified as a series of time windows. When a dispatch
or run window specification includes more than one time window, the window is open
if any of the time windows are open. The following example specifies that the host is
available only during weekends (Friday evening at 19:00 until Monday morning at
08:30) and during nights (20:00 to 08:30 every day).

5:19:00-1:8:30 20:00-8:30

5HVRXUFH�DQG�5HVRXUFH�5HTXLUHPHQWV

LSF provides a powerful means for you to describe your heterogeneous cluster in
terms of resources. One of the most important decisions LSF makes when scheduling
a job is to map a job’s resource requirements to resources available on individual hosts.
�

�

There are several types of resources. Load indices measure dynamic resource
availability such as a host’s CPU load or available swap space. Static resources represent
unchanging information such as the number of CPUs a host has, the host type, and the
maximum available swap space.

Resources can also be described in terms of where they are located. For example, a
shared resource is a resource that is associated with the entire cluster or a subset of hosts
within the cluster.

Resource names can be any string of characters, excluding the characters reserved as
operators. The lsinfo command lists the resources available in your cluster.

For a complete description of resources and how they are used, see Section 4,
‘Resources’, beginning on page 35 of the LSF Batch User’s Guide.

To best place a job with optimized performance, resource requirements can be
specified for each application. A resource requirement is an expression that contains
resource names and operators. Resource requirements can be configured for
individual applications, or specified for each job. The detailed format for resource
requirements can be found in ‘Resource Requirement Strings’ on page 46 of the LSF Batch
User’s Guide.

6KDUHG�5HVRXUFHV

A shared resource is a resource that is associated with the entire cluster or a subset of
hosts within the cluster. In contrast to host-based resources such as memory or swap
space, using a shared resource from one machine affects the availability of that
resource as seen by other machines. Common examples of shared resources include
floating licenses for software packages, shared file systems, and network bandwidth.
LSF provides a mechanism to configure which machines share a particular resource
and to monitor the availability of those resources. LSF Batch jobs can be scheduled
based on the availability of shared resources.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH �

/6)�%DWFK�&RQFHSWV�
5HPRWH�([HFXWLRQ�&RQWURO

There are two aspects to controlling access to remote execution. The first requirement
is to authenticate the user. When a user executes a remote command, the command
must be run with that user’s permission. The LSF daemons need to know which user
is requesting the remote execution. The second requirement is to check access controls
on the remote host. The user must be authorized to execute commands remotely on the
host.

8VHU�$XWKHQWLFDWLRQ�0HWKRGV

LSF supports user authentication using external authentication (the default). On
UNIX, LSF also supports user authentication using privileged ports and using the RFC
931 or RFC 1413 identification protocols.

$XWKHQWLFDWLRQ�8VLQJ�3ULYLOHJHG�3RUWV

If a load-sharing program is owned by root and has the setuid bit set, the LSF
API functions use a privileged port to communicate with LSF servers, and
the servers accept the user ID supplied by the caller. This is the same user
authentication mechanism as used by rlogin and rsh.

When a setuid application calls the LSLIB initialization routine, a number
of privileged ports are allocated for remote connections to LSF servers. The
effective user ID then reverts to the real user ID. Therefore, the number of
remote connections is limited. Note that an LSF utility reuses the
connection to the RES for all remote task executions on that host, so the
number of privileged ports is only a limitation on the number of remote
hosts that can be used by a single application, not on the number of remote
tasks. Programs using LSLIB can specify the number of privileged ports to
be created at initialization time.

$XWKHQWLFDWLRQ�8VLQJ�,GHQWLILFDWLRQ�'DHPRQV

The RFC 1413 and RFC 931 protocols use an identification daemon running
on each client host. Using an identification daemon incurs more overhead,
but removes the need for LSF applications to allocate privileged ports. All

UNIX

UNIX
��

�

LSF commands except lsadmin can be run without setuid permission if an
identification daemon is used.

You should use identification daemons if your site cannot install programs
owned by root with the setuid bit set, or if you have software developers
creating new load-sharing applications in C using LSLIB.

An implementation of RFC 931 or RFC 1413 such as pidentd or authd can
be obtained from the public domain (if you have access to Internet FTP, a
good source for ident daemons is host ftp.lysator.liu.se, directory pub/
ident/servers.). RFC 1413 is a more recent standard than RFC 931. LSF is
compatible with both.

([WHUQDO�$XWKHQWLFDWLRQ

When an LSF client program is invoked (for example, lsrun), the client program
automatically executes eauth -c hostname to get the external authentication data.
hostname is the name of the host running the LSF daemon (for example, RES) on
which the operation will take place. The external user authentication data can be
passed to LSF via eauth’s standard output.

When the LSF daemon receives the request, it executes eauth -s under the primary
LSF administrator user ID. The parameter LSF_EAUTH_USER must be configured in
the /etc/lsf.sudoers file if your site needs to run authentication under another
user ID (see ‘The lsf.sudoers File’ on page 189 for details). eauth -s is executed to
process the user authentication data. The data is passed to eauth -s via its standard
input. The standard input stream has the following format:

uid gid username client_addr client_port user_auth_data_len user_auth_data

where:

• uid is the user ID in ASCII of the client user.

• gid is the group ID in ASCII of the client user.

• username is the user name of the client user.

• client_addr is the host address of the client host in ASCII dot notation.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
• client_port is the port number from where the client request is made.

• user_auth_data_len is the length of the external authentication data in ASCII
passed from the client.

• user_auth_data is the external user authentication data passed from the client.

The LSF daemon expects eauth -s to write 1 to its standard output if authentication
succeeds, or 0 if authentication fails.

The same eauth -s process can service multiple authentication requests; if the
process terminates, the LSF daemon will re-invoke eauth -s on the next
authentication request.

By default, eauth uses an internal key to encrypt authentication data. To use an
external key to improve the security, configure the parameter LSF_EAUTH_KEY in the
lsf.sudoers file (see page 165).

You can configure your own user authentication scheme using the eauth mechanism
of LSF. To use external authentication, an executable called eauth must be installed in
LSF_SERVERDIR. This is set up automatically during the installation.

You may choose to write your own eauth executable and use it instead of the LSF
default. Example uses of external authentication include support for Kerberos 4 and
DCE client authentication using the GSSAPI. These examples can be found in the
examples/krb and examples/dce directories in the standard LSF distribution.
Installation instructions are found in the README file in these directories.

6HFXULW\�RI�/6)�$XWKHQWLFDWLRQ

All authentication methods supported by LSF depend on the security of the root
account on all hosts in the cluster. If a user can get access to the root account, they can
subvert any of the authentication methods. There are no known security holes that
allow a non-root user to execute programs with another user’s permission.

Some people have particular concerns about security schemes involving RFC 1413
identification daemons. When a request is coming from an unknown host, there is no
way to know whether the identification daemon on that host is correctly identifying
the originating user.
��

�

LSF only accepts job execution requests that originate from hosts within the LSF
cluster, so the identification daemon can be trusted.

The identification protocol uses a port in the UNIX privileged port range,
so it is not possible for an ordinary user to start a hacked identification
daemon on an LSF host.

On Windows NT, external authentication is installed automatically. You
may disable external authentication by disabling the LSF_AUTH parameter
in the lsf.conf file.

On UNIX, this means that authentication is done using privileged ports
and binaries that need to be authenticated (for example, bsub) to setuid
root.

On Windows NT, this does not provide any security because Windows NT
does not have the concept of setuid binaries and does not restrict which
binaries can use privileged ports. A security risk exists in that a user can
discover the format of LSF protocol messages and write a program that
tries to communicate with an LSF server. External authentication should be
used where this security risk is a concern.

The system environment variable LSF_ENVDIR is used by LSF to obtain
the location of lsf.conf which points to important configuration files.
Any user who can modify system environment variables can modify
LSF_ENVDIR to point to their own configuration and start up programs
under the lsfadmin account.

Once the LSF Service is started, it will only accept requests from the
cluster administrator accounts specified during the installation. To allow
other users to interact with the LSF Service, you must set up the
lsf.sudoers file under the directory specified by the SYSTEMROOT
environment variable. See ‘The lsf.sudoers File’ on page 189 for the format of
the lsf.sudoers file.

Note
Only the LSF_STARTUP_USERS and LSF_STARTUP_PATH are used
on NT. You should ensure that only authorized users modify the files
under the SYSTEMROOT directory.

UNIX

NT
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
All external binaries invoked by the LSF daemons (such as esub, eexec,
elim, eauth, and queue level pre- and post-execution commands) are run
under the lsfadmin account.

+RZ�/6)�&KRRVHV�$XWKHQWLFDWLRQ�0HWKRGV

LSF uses the LSF_AUTH parameter in the lsf.conf file to determine which type of
authentication to use.

If an LSF application is not setuid to root, library functions use a non-privileged port. If
the LSF_AUTH flag is not set in the /etc/lsf.conf file, the connection is rejected. If
LSF_AUTH is defined to be ident the RES on the remote host, or the mbatchd in the
case of a bsub command, contacts the identification daemon on the local host to verify
the user ID. The identification daemon looks directly into the kernel to make sure the
network port number being used is attached to a program being run by the specified
user.

LSF allows both the setuid and authentication daemon methods to be in effect
simultaneously. If the effective user ID of a load-sharing application is root, then a
privileged port number is used in contacting the RES. RES always accepts requests
from a privileged port on a known host even if LSF_AUTH is defined to be ident. If
the effective user ID of the application is not root, and the LSF_AUTH parameter is
defined to be ident, then a normal port number is used and RES tries to contact the
identification daemon to verify the user’s identity.

External user authentication is used if LSF_AUTH is defined to be eauth. In this case,
LSF will run the external executable eauth in the LSF_SERVERDIR directory to
perform the authentication.

The error message “User permission denied” is displayed by lsrun, bsub, and
other LSF commands if LSF cannot verify the user’s identity. This might be because the
LSF applications are not installed setuid, the NFS directory is mounted with the
nosuid option, the identification daemon is not available on the local or submitting
host, or the external authentication failed.

If you change the authentication type while the LSF daemons are running, you will
need to run the command lsfdaemons start on each of the LSF server hosts so that
the daemons will use the new authentication method.
��

�

+RVW�$XWKHQWLFDWLRQ�0HWKRGV

When a batch job or a remote execution request is received, LSF first determines the
user’s identity. Once the user’s identity is known, LSF decides whether it can trust the
host from which the request comes from.

7UXVW�/6)�+RVW

LSF normally allows remote execution by all users except root, from all hosts in the LSF
cluster; LSF trusts all hosts that are configured into your cluster. The reason behind this
is that by configuring an LSF cluster you are turning a network of machines into a
single computer. Users must have valid accounts on all hosts. This allows any user to
run a job with their own permission on any host in the cluster. Remote execution
requests and batch job submissions are rejected if they come from a host not in the LSF
cluster.

A site can configure an external executable to perform additional user or host
authorization. By defining LSF_AUTH to be eauth, the LSF daemon will invoke eauth
-s when it receives a request that needs authentication and authorization. As an
example, this eauth can check if the client user is on a list of authorized users or if a
host has the necessary privilege to be trusted.

8VLQJ��HWF�KRVWV�HTXLY

If the LSF_USE_HOSTEQUIV parameter is set in the lsf.conf file, LSF
uses the same remote execution access control mechanism as the rsh
command. When a job is run on a remote host, the user name and
originating host are checked using the ruserok(3) function on the
remote host.

This function checks in the /etc/hosts.equiv file and the user’s
$HOME/.rhosts file to decide if the user has permission to execute jobs.

The name of the local host should be included in this list. RES calls
ruserok() for connections from the local host. mbatchd calls
ruserok() on the master host, so every LSF Batch user must have a valid
account and remote execution permission on the master host.

The disadvantage of using the /etc/hosts.equiv and $HOME/.rhosts
files is that these files also grant permission to use the rlogin and rsh

UNIX
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
commands without giving a password. Such access is restricted by security
policies at some sites.

See the hosts.equiv(5) and ruserok(3) manual pages for details on the format
of the files and the access checks performed.

The error message “User permission denied ” is displayed by lsrun,
bsub, and other LSF commands if you configure LSF to use ruserok()
and the client host is not found in either the /etc/hosts.equiv or the
$HOME/.rhosts file on the master or remote host.

8VHU�$FFRXQW�0DSSLQJ

By default, LSF assumes uniform user accounts throughout the cluster. This means that
job will be executed on any host with exactly the same user ID and user login name.

LSF Batch has a mechanism to allow user account mapping across dissimilar name
spaces. Account mapping can be done at the individual user level and system level.
Individual users of the LSF cluster can set up their own account mapping by setting up
an .lsfhosts file in their home directories. See ‘User-Level Account Mapping Between
Clusters’ on page 192 of the LSF Batch User’s Guide for details of user level account
mapping. An LSF administrator can set up system-level account mapping in the
lsb.users file. See ‘System Level Account Mapping’ on page 157 for details.

The LSF administrator can disable user account mapping.

-RE�6WDUWHUV

A job starter is a specified command (or set of commands) that executes immediately
prior to a submitted batch job or an interactive job. This can be useful if you are
submitting or running jobs that require specific setup steps to be performed before
execution, or jobs that must be executed in a specific environment. Any situation in
which you would ordinarily write a wrapper around the job you want executed is a
candidate for a job starter.
��

�

There are two types of job starters in LSF: command-level and queue-level. A
command-level job starter is user-defined, and precedes interactive jobs (submitted
using lsrun, for example). A queue-level job starter is defined by the LSF
administrator, and precedes batch jobs submitted to a specific queue (for example,
using bsub or xbsub).

You can accomplish similar things with either job starter, but their functional details
are slightly different.

&RPPDQG�/HYHO�-RE�6WDUWHUV

Individual users can select an existing command to be a job starter, or they can create
a script containing a desired set of commands to serve as a job starter. Setting the
LSF_JOB_STARTER environment variable to the selected command or script causes
that command or script to be executed immediately before an interactive job.

For example, when a command-level job starter is defined as “/bin/ksh
-c”, interactive jobs will be run under a Korn shell environment.

For example, when a command-level job starter is defined as
“C:\cmd.exe /C”, interactive jobs will run under a DOS shell
environment.

When a job is run with a command-level job starter defined, LSF’s Remote Execution
Server runs the job starter rather than running the job itself, which is passed to the job
starter as a command-line argument.

Command-level job starters have no effect on batch jobs, including interactive batch
jobs (see ‘Interactive Batch Job Support’ on page 36 for information on interactive batch
jobs).

See ‘Command-Level Job Starters’ on page 144 of the LSF Batch User’s Guide for detailed
information about setting up and using a command-level job starter to run interactive
jobs.

4XHXH�/HYHO�-RE�6WDUWHUV

The LSF administrator can select an existing command to be a job starter, or create a
script containing a desired set of commands to serve as a job starter. Setting the

UNIX

NT
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
JOB_STARTER parameter in the queue definition (contained in the lsb.queues file)
to the selected command or script causes that command or script to be executed
immediately before all batch jobs submitted to that queue are executed.

For example, by defining a queue-level job starter as “xterm -e”, all jobs
in the queue will run in an X terminal window.

For example, by defining a queue-level job starter as “C:\cmd.exe /C”,
all jobs in the queue will run under the DOS shell environment.

Queue-level job starters have no effect on interactive jobs, unless the interactive job is
submitted to a queue as an interactive batch job (see ‘Interactive Batch Job Support’ on
page 36 for information on interactive batch jobs).

See ‘Queue-Level Job Starters’ on page 129 for detailed information about defining a job
starter for an LSF queue.

/RDG�6KDULQJ�ZLWK�/6)�%DVH

LSF Base system provides a very basic level of services that allow you to perform load-
sharing and distributed processing. This is implemented via the LSF Base system
services. Many utilities of the LSF Base system use the basic services for placement
decision, host selection, and remote execution.

LIM provides convenient services that help job placement, host selection, and load
information that are essential to the scheduling of jobs. lsrun and lsgrun, for
example, use the LIM’s placement advice to run jobs on the least loaded yet most
powerful hosts. When LIM gives placement advice, it takes into consideration many
factors, such as current load information, job’s resource requirements, and configured
policies in the LIM cluster configuration file.

RES provides transparent and efficient remote execution and remote file operation
services so that jobs can be easily shipped to anywhere in the network once a
placement decision has been made. Files can be accessed easily from anywhere in the
network using remote file operation services.

UNIX

NT
��

�

The LSF Base provides sufficient services to many simple load-sharing applications
and utilities, as exemplified by LSF Base tools and lstcsh. If sophisticated job
scheduling and resource allocation policies are necessary, more complex scheduling
must be built on top of the LSF Base, such as LSF Batch. Since the placement service
from LIM is just advice, LSF Batch makes its own placement decision based on advice
from LIM as well as further policies that the site configures.

+RZ�/6)�%DWFK�6FKHGXOHV�-REV

LSF Batch provides a rich collection of mechanisms for controlling the sharing of
resources by jobs. Most sites do not use all of them; a few would provide enough
control. However, it is important that you be aware of all of them to understand how
LSF Batch works and to choose suitable controls for your site. More discussions of job
scheduling policies are given in ‘Tuning LSF Batch’ on page 107.

When a job is placed on an LSF Batch queue, many factors control when and where the
job starts to run:

• active time window of the queue or hosts

• resource requirements of the job

• availability of eligible hosts

• various job slot limits

• job dependency conditions

• fairshare constraints

• load conditions.

When LSF Batch is trying to place a job, it obtains current load information for all hosts
from LIM. The load levels on each host are compared to the scheduling thresholds
configured for that host in the Host section of the lsb.hosts file, as well as the per-
queue scheduling thresholds configured in the lsb.queues file. If any load index
exceeds either its per-queue or its per-host scheduling threshold, no new job is started
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
on that host. When a job is running, LSF Batch periodically checks the load level on the
execution host. If any load index is beyond either its per-host or its per-queue
suspending conditions, the lowest priority batch job on that host is suspended.

LSF Batch supports both batch jobs and interactive jobs. So by configuring appropriate
resource allocation policies, all workload in your cluster can be managed by LSF Batch.

-RE�6WDWHV

An LSF Batch job goes through a series of state transitions until it eventually completes
its task, fails, or is terminated. The possible states of a job during its life cycle are shown
in the diagram below.

)LJXUH�����%DWFK�-RE�6WDWHV

Many jobs enter only three states:

PEND:
waiting in the queue

RUN:
dispatched to a host and running

SSUSP

RUN

USUSP

EXIT

PSUSP

PEND
bsub

bstop

bresume

bkill
or abnormal
exit

DONE

suitable host found

migration

normal
completion

host OK host overloaded

bkill

bstop bresume

bkill
��

�

DONE:
terminated normally

A job remains pending until all conditions for its execution are met. Some of the
conditions are:

• start time specified by the user when the job is submitted

• load conditions on qualified hosts

• dispatch windows during which the queue can dispatch and qualified hosts can
accept jobs

• run windows during which jobs from the queue can run

• limits on the number of job slots configured for a queue, a host, or a user

• relative priority to other users and jobs

• availability of the specified resources

• job dependency and pre-execution conditions.

The bjobs -lp command displays the names of hosts that cannot accept a job at the
moment together with the reasons the job cannot be accepted.

A job might terminate abnormally for various reasons. Job termination can happen
from any state. An abnormally terminated job goes into EXIT state. The situations
where a job terminates abnormally include:

• The job is cancelled by the user while pending, or after being started.

• The job is not able to be dispatched before it reaches its termination deadline, and
thus is aborted by LSF Batch.

• The job fails to start successfully. For example, the wrong executable is specified
by the user when the job is submitted.

• The job exits with a non-zero exit status.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
Jobs can also be suspended at any time. A job can be suspended by its owner, by the
LSF administrator, by the root user (superuser), or by the LSF Batch system. There are
three different states for suspended jobs:

PSUSP
suspended by its owner or the LSF administrator while in PEND state

USUSP
suspended by its owner or the LSF administrator after being dispatched

SSUSP
suspended by the LSF Batch system after being dispatched

After a job has been dispatched and started on a host, it can be suspended by LSF Batch.
If the load on the execution host or hosts becomes too high, batch jobs could be
interfering among themselves or could be interfering with interactive jobs. In either
case, some jobs should be suspended to maximize host performance or to guarantee
interactive response time.

LSF Batch suspends jobs according to the priority of the job’s queue. When a host is
busy, LSF Batch suspends lower priority jobs first unless the scheduling policy
associated with the job dictates otherwise. Jobs are also suspended by the system if the
job queue has a run window and the current time goes outside the run window.

The bjobs -s command displays the reason why a job was suspended.

A system-suspended job can later be resumed by LSF Batch if the load condition on the
execution host(s) falls low enough or when the closed run window of the queue opens
again.

(OLJLEOH�+RVWV

Each time LSF Batch attempts to dispatch a job, it checks to see which hosts are eligible
to run the job. A number of conditions determine whether a host is eligible:

• Host dispatch windows

• Resource requirements of the job

• Resource requirements of the queue
��

�

• Host list of the queue

• Host load levels

• Job slot limits of the host.

A host is only eligible to run a job if all the conditions are met. If a batch job is queued
and there is an eligible host for that job, the batch job is started on that host. If more
than one host is eligible, the job is started on the best host based on both the job and the
queue resource requirements.

'LVSDWFK�:LQGRZV

Each queue can be configured with a list of time periods, called dispatch windows,
during which jobs in the queue can be dispatched. Jobs submitted to a queue are
dispatched only when a queue dispatch window is open. Jobs can be submitted to a
queue at any time; if the queue dispatch windows are closed, the jobs remain pending
in the queue until a dispatch window opens. If no queue dispatch window is
configured, the default is always open. Queue dispatch windows are displayed by the
bqueues -l command.

Each host can also have dispatch windows. A host is not eligible to accept jobs when
its dispatch windows are closed. Each batch job is dispatched from a specific queue, so
a host is eligible to run a batch job if it is eligible for jobs from the queue, its dispatch
windows are open, and it has the LSF resources required by the job. If no host dispatch
window is configured, the default is always open. Host dispatch windows are
displayed by the bhosts -l command.

Dispatch windows only control dispatching. Once a job has been dispatched to a host,
it is unaffected by the status of dispatch windows.

5XQ�:LQGRZV

Each queue can be configured with a list of time periods, called run windows, during
which jobs from the queue can run. Jobs submitted to a queue only run when a queue
run window is open. Jobs can be submitted to a queue at any time; if the queue run
windows are closed, the jobs remain pending in the queue until a queue run window
opens. When all of a queue’s run windows close, any jobs dispatched from the queue
are suspended until the queue’s next run window opens. If no queue run window is
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
configured, the default is always open. Queue run windows are displayed by the
bqueues -l command.

Run windows also affect dispatching. No jobs are dispatched from a queue while its
run windows are closed.

Note
Hosts only have dispatch windows, not run windows.

5HVRXUFH�5HTXLUHPHQWV

Each job can specify resource requirements. The resource requirements restrict which
hosts the job can run on. For example, if your cluster contains three hosts with the
spice resource and you give the argument “-R spice” to the bsub command, your
job can only run on one of those three hosts. The lshosts command displays the
resources available on each host. Each job can also specify an explicit list of eligible
hosts, using the -m option to bsub. The bjobs -l command displays this list for each
job.

Each queue can define resource requirements that will be applied to all the jobs in the
queue. The queue-level resource requirements can also serve as job scheduling
conditions shared by all jobs in the queue.

+RVW�/LVWV

Each queue can be configured with a list of eligible hosts. For example, a queue for
running programs on shared memory multiprocessors can be configured so that only
the multiprocessor hosts are eligible. The eligible hosts for a queue are displayed by the
bqueues -l command.

+RVW�/RDG�/HYHOV

A host is available if the values of the load indices (such as r1m, pg, mem) of the host
are within the configured scheduling thresholds. There are two sets of scheduling
thresholds: host and queue. If any load index on the host exceeds the corresponding
host threshold or queue threshold, the host is not eligible to run any job. The bhosts
-l command displays the host thresholds. The bqueues -l command displays the
queue thresholds.
��

�

Resource requirements at the queue level can also be used to specify scheduling
conditions (for example, r1m<0.4 && pg<3).

2UGHU�RI�-RE�'LVSDWFKLQJ

Each LSF Batch queue has a priority number. LSF Batch tries to start jobs from the
highest priority queue first. Within each queue, by default jobs are dispatched in First-
Come, First-Served (FCFS) order. If a fairshare scheduling policy has been specified for
the queue or if host partitions have been configured, jobs are dispatched in accordance
with these policies. (See ‘Fairshare in Queues’ on page 31 and ‘Fairshare in Host Partitions’
on page 31.)

The bjobs command shows the order in which jobs in a queue will actually be
dispatched for the FCFS policy. This order can be changed by the btop and bbot
commands (see ‘Moving Jobs — bswitch, btop, and bbot’ on page 96).

Jobs can be dispatched out of turn if pre-execution conditions are not met, specific
hosts or resources are busy or unavailable, or a user has reached the user job slot limit.
(See ‘Host Load Levels’ on page 24, ‘User Job Slot Limits’ on page 27, and ‘Queue-Level Pre-
/Post-Execution Commands’ on page 224.)

Jobs are dispatched at 60 second intervals (the interval is configured by the
MBD_SLEEP_TIME parameter in the lsb.params file). In each dispatching turn, LSF
Batch tries to start as many jobs as possible.

To prevent overloading any host, LSF Batch waits for a configured number of
dispatching intervals before sending another job to the same host. The waiting time is
configured by the JOB_ACCEPT_INTERVAL parameter in the lsb.params file; the
default is one dispatch interval. If JOB_ACCEPT_INTERVAL is set to zero, more than
one job can be started on a host in the same dispatch turn.

The algorithm for starting jobs is:

• for each queue, from highest to lowest priority

• for each job in the queue, from first to last

• if any host is eligible to run this job, start the job on the best eligible host, and mark
that host ineligible to run any other job until JOB_ACCEPT_INTERVAL dispatch
turns have passed
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
A higher priority or earlier batch job is only bypassed if no hosts are available that meet
the requirements of the job. If a host is available but is not eligible to run a particular
job, LSF Batch looks for a later job to start on that host. LSF Batch starts the first job
found for which that host is eligible.

-RE�6ORW�/LPLWV

Job slot is the basic unit of processor allocation in LSF Batch. A sequential job uses one
job slot whereas a parallel job that has N components (tasks) uses N job slots, which can
span multiple hosts. A job slot can be used by a maximum of one job. A job slot limit
restricts the number of job slots that can be used at any one time. Each LSF Batch host,
queue, and user can have a job slot limit. The table below gives the combinations for
which job slot limits can be configured, along with the parameter used to configure the
corresponding limit.

Job slot limits are used by queues when deciding whether a particular job belonging to
a particular user should be started on a specific host. Depending on whether or not
preemptive scheduling policy has been configured for individual queues, each queue
can have a different method of counting jobs toward job slot limits. The following
points describe how jobs use job slots from a queue’s point of view:

• If preemptive scheduling policy is not defined for the queue, slots taken by jobs
that are started from any queues but have not yet finished are counted toward the
respective job slot limits defined in the User and Host columns of Table 1. This
includes the slots used by both running and suspended jobs (jobs in the RUN,
USUSP and SSUSP states).

7DEOH����-RE�6ORW�/LPLWV

8VHU
(in lsb.users)

+RVW
(in lsb.hosts)

4XHXH
(in lsb.queues)

Total MAX_JOBS MXJ QJOB_LIMIT

Per user JL/U UJOB_LIMIT

Per processor JL/P PJOB_LIMIT

Per host HJOB_LIMIT
��

�

• If preemptive scheduling policy is defined, only the slots that are taken by jobs that
are running and cannot be preempted by the current queue are counted toward the
corresponding job slot limits defined in the User and Host columns of Table 1.
This also includes running jobs from the current queue.

This means that slots taken by suspended jobs are not counted toward the job slot
limits in User and Host columns.

• No matter what the queue policy is, slots taken by jobs that have been started from
the current queue but have not yet finished are counted toward the job slot limits
defined in the Queue column of Table 1.

• No matter what the queue policy is, slots that are reserved by some jobs on some
hosts are counted toward the respective job slot limits defined in the User, Host,
and Queue columns of Table 1. This means some pending jobs could occupy job
slots.

The resulting counters are then used by this queue against various job slot limits
during the scheduling of new jobs. Queues that can preempt others are more
aggressive in scheduling jobs to hosts because a host appearing as full by a non-urgent
queue would appear as not full from an urgent queue’s point of view. See ‘Preemptive
Scheduling’ on page 32 for the concept of preemptive scheduling.

Note
Although high priority preemptive queues neglect running jobs from low priority
preemptable queues in checking job slot limits, LSF Batch will make sure that the total
number of running jobs from a queue, a user, or on a host will not exceed the
configured job slot limits in lsb.queues, lsb.users, and lsb.hosts. This is
done by preempting (usually suspending) running jobs that can be preempted should
the execution of a preemptive job cause the violation of the configured job slot limits.

8VHU�-RE�6ORW�/LPLWV

Jobs are normally queued on a first-come, first-served (FCFS) basis. It is possible for
some users to abuse the system by submitting a large number of jobs; jobs from other
users must wait in the queue until these jobs complete. One way to prevent this is to
use user job slot limits.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
User job slot limits control the number of job slots that can be used at once by a specific
user or group of users. The definition of a job slot usage is dependent on the queue’s
policy, as described in ‘Job Slot Limits’ on page 26.

A user can submit an unlimited number of jobs to LSF Batch system, but the system
will only schedule this user’s jobs up to his/her job slot limits. The system will not
schedule further jobs for the user until some of the scheduled jobs free up the used job
slots. User job slot limits come in different forms.

Each user or group of users can be assigned a system-wide job slot limit using the
MAX_JOBS parameter in the lsb.users file.

Each user and user group can also be assigned a per-processor job slot limit using the
JL/P parameter in the lsb.users file. For hosts that can run more than one LSF Batch
job per processor, this prevents a user or group from using all the available job slots on
the host.

User job slot limits are configured in the User section of the lsb.users file. See ‘The
lsb.users File’ on page 198.

+RVW�-RE�6ORW�/LPLWV

It is frequently useful to limit the maximum number of jobs that can be run on a host
to prevent a host from being over-loaded with too many jobs and to maximize the
throughput of a machine. Each host can be restricted to run a limited number of jobs at
one time using the MXJ parameter in the Host section of the lsb.hosts file.

Each host can also restrict the number of jobs from each user allowed to run on the host,
using the JL/U parameter in the lsb.hosts file. This limit is similar to the JL/P
parameter in the lsb.users file. The JL/U parameter is configured for a particular
host, and applies to all users on that host. The JL/P parameter is configured for a
particular user, and applies to all hosts.

When a queue finds a host reaching one of its job slot limits, it will not start more jobs
to this host until one or more job slots on the host are freed. The definition of job slot
usage is described in ‘Job Slot Limits’ on page 26.

For preemptive queues, if lower priority jobs are running on a host that has reached
one of its job slot limits, LSF Batch will suspend one of these jobs to enable dispatch or
resumption of a higher priority job.
��

�

Host job slot limits are configured in the Host section of the lsb.hosts file, which is
described in ‘The lsb.hosts File’ on page 202.

4XHXH�-RE�6ORW�/LPLWV

The QJOB_LIMIT parameter in the lsb.queues file controls the number of job slots
a queue can use at any time. This parameter can be used to prevent a single queue from
using all the processing resources in the cluster. For example, a high priority queue
could have a QJOB_LIMIT set so that a few hosts remain available to run lower priority
jobs.

Each queue can have a limit on the number of job slots a single user is allowed to use
in that queue at one time. This limit prevents a single user from filling a queue with
jobs and delaying other users’ jobs. For example, each user could be limited to use one
job slot at a time in a high priority queue to discourage overuse of the high priority
queue.

The per-user job slot limit of a queue is configured with the UJOB_LIMIT parameter
in the lsb.queues file.

Each queue can also have a limit on the number of jobs dispatched from the queue to
a single processor, configured using the PJOB_LIMIT parameter in the lsb.queues
file. This limit restricts the number of jobs a particular queue sends to any one host,
while still allowing jobs from other queues to be dispatched to that host.

The PJOB_LIMIT parameter applies to each processor on a host. This allows the same
limit to apply for both uniprocessor and multiprocessor hosts, without leaving
multiprocessors underused.

A queue can limit the number of job slots available to jobs that are sent to the same host
regardless of the number of processors the host has. This is set using the HJOB_LIMIT
parameter in the lsb.queues file. If all of the job slots of a host have been taken or
reserved by the jobs in this queue, no more jobs in this queue can be started on that host
until some of the slots are released.

A queue’s job slot limit per host does not prevent jobs from other queues from being
dispatched to that host. For example, a low priority queue could be restricted to
starting one job per processor. Higher priority queues would still be allowed to start
other jobs on that host. By setting a low suspending threshold on the low priority
queue, the low priority job can be forced to suspend when the high priority job starts.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
Queue job slot limits are configured in the Queue sections of the lsb.queues file,
which is described in ‘The lsb.queues File’ on page 208.

5HVRXUFH�/LPLWV�DQG�5HVRXUFH�8VDJH

Jobs submitted through the LSF Batch system will have the resources they use
monitored while they are running. This information is used to enforce job-level
resource limits as well as to improve the fairshare scheduling to consider the current
CPU time used by a job.

Resource limits supported by LSF Batch are described in ‘Resource Limits’ on page 217.

Job-level resource usage is collected through a special process called PIM (Process
Information Manager). PIM is managed internally by LSF. The information collected
by PIM includes:

• Total CPU time consumed by all processes in the job

• Total resident memory usage in kilobytes of all currently running processes in a
job

• Total virtual memory usage in kilobytes of all currently running processes in a job

• Currently active process group ID in a job

• Currently active processes in a job.

The -l option of the bjobs command displays the current resource usage of the job.
The usage information is sampled by PIM every 30 seconds and collected by the
sbatchd at a maximum frequency of every SBD_SLEEP_TIME (configured in the
lsb.params file) and sent to the mbatchd. The update is done only if the value for
the CPU time, resident memory usage, or virtual memory usage has changed by more
than 10 percent from the previous update, or if a new process or process group has
been created.
��

�

6FKHGXOLQJ�3ROLFLHV

)DLUVKDUH�LQ�4XHXHV

Fairshare scheduling is an alternative to the default first-come, first-served scheduling.
Fairshare scheduling divides the processing power of the LSF cluster among users and
groups to provide fair access to resources for all the jobs in a queue. LSF allows
fairshare policies to be defined at the queue level so that different queues can have
different sharing policies. The fairshare policy of a queue applies to all hosts used by
the queue.

Fairshare scheduling at the level of queues and host partitions (see below) are mutually
exclusive.

For more information about how fairshare scheduling works and how to configure a
fairshare queue, see ‘Controlling Fairshare’ on page 113 and ‘Queue Level Fairshare’ on
page 221.

)DLUVKDUH�LQ�+RVW�3DUWLWLRQV

Host partition provides fairshare policy at the host level. Unlike queue-level fairshare
as described above, a host partition provides fairshare of resources on a group of hosts,
and it applies to all queues that use hosts in the host partition.

Fairshare scheduling at the level of queues and host partitions are mutually exclusive.

For more information about how fairshare works and how it can be used to create
specific scheduling policies, see ‘Controlling Fairshare’ on page 113 and ‘Host Partitions’
on page 206.

+LHUDUFKLFDO�)DLUVKDUH

Hierarchical fairshare allows resources to be allocated to users in a hierarchical manner
(for both queues and host partitions). Groups of users can collectively be allocated a
share, and that share can be further subdivided and given to subgroups, resulting in a
share tree. For a discussion of the terminology associated with hierarchical fairsharing,
see ‘Hierarchical Fairshare’ on page 60 in the LSF Batch User’s Guide.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
3UHHPSWLYH�6FKHGXOLQJ

Preemptive scheduling allows the LSF administrator to configure job queues such that a
high priority job can preempt a low priority running job by suspending the low
priority job. This is useful to ensure that long-running low priority jobs do not hold
resources while high priority jobs are waiting for a job slot or job slots.

For more information about how preemptive scheduling works and how to configure
a preemptive or preemptable queue, see ‘Preemptive Scheduling’ on page 222.

([FOXVLYH�6FKHGXOLQJ

Exclusive scheduling makes it possible to run exclusive jobs on a host. A job only runs
exclusively if it is submitted to an exclusive queue, and the job is submitted with the
bsub -x option. An exclusive job runs by itself on a host — it is dispatched only to a
host with no other batch jobs running, and LSF does not send any other jobs to the host
until the exclusive job completes.

For more information about how exclusive scheduling works and how to configure an
exclusive queue, see ‘Exclusive Queue’ on page 223.

3URFHVVRU�5HVHUYDWLRQ�DQG�%DFNILOOLQJ

Processor Reservation and Backfilling ensure that large parallel jobs are able to run
without underutilizing resources.

There might be delays in the execution of parallel jobs when they are competing with
sequential jobs for resources. This is because as job slots become available, they are
used in smaller numbers by sequential jobs. This results in the larger number of job
slots required by a parallel job never becoming available at any given instant. Processor
reservation allows job slots to be reserved for a parallel job until enough are available to
start the job. When a job slot is reserved for a job, it is unavailable to other jobs.

However, there are situations where the system can determine that the job reserving
the processors cannot start before a certain time. Backfilling is the execution of a job that
is short enough to fit into the time slot during which the processors are reserved,
allowing more efficient use of available resources. Short jobs are said to backfill
processors reserved for large jobs. Backfilling requires that users specify how long each
job will run so that LSF Batch can estimate when it will start and complete.
��

�

6XVSHQGLQJ�-REV

Jobs running under LSF Batch can be suspended based on the load conditions on the
execution host(s). Each host and each queue can be configured with a set of suspending
conditions. If the load conditions on an execution host exceed either the corresponding
host or queue suspending conditions, one or more jobs running on that host will be
suspended to reduce the load until it falls below the suspending conditions.

LSF Batch provides different alternatives for configuring suspending conditions.
Suspending conditions are configured at the host-level as suspending thresholds,
whereas suspending conditions are configured at the queue-level as either suspending
thresholds, or by using the STOP_COND parameter in the lsb.queues file, or both. See
‘Host Section’ on page 202, ‘Flexible Expressions for Queue Scheduling’ on page 213, and
‘Load Thresholds’ on page 216 for details about configuration options for suspending
conditions at host and queue levels.

The suspending conditions are displayed by the bhosts -l and bqueues -l
commands. The thresholds that apply to a particular job are the more restrictive of the
host and queue thresholds, and are displayed by the bjobs -l command.

LSF Batch checks the host load levels periodically. The period is defined by the
SBD_SLEEP_TIME parameter in the lsb.params file. There is a time delay between
when LSF Batch suspends a job and when the changes to host load are seen by the LIM.
To allow time for load changes to take effect, LSF Batch suspends at most one job per
SBD_SLEEP_TIME on each host.

Each turn, LSF Batch gets the load levels for that host. Then for each job running on the
host, LSF Batch compares the load levels against the host suspending conditions and
the queue suspending conditions for the queue that job was submitted to. If any
suspending condition at either the corresponding host or queue level is satisfied as a
result of increased load, the job is suspended.

Jobs from the lowest priority queue are checked first. If two jobs are running on a host
and the host is too busy, the lower priority job is suspended and the higher priority job
is allowed to continue. If the load levels are still too high on the next turn, the higher
priority job is also suspended.

Note that a job is only suspended if the load levels are too high for that particular job’s
suspending conditions. It is possible, though not desirable, to configure LSF Batch so
that a low priority queue has very loose suspending conditions. In this case a job from
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
a higher priority queue might be suspended first, because the load levels are not yet
too high for the low priority queue.

In addition to excessive load, jobs from a queue are also suspended if all the run
windows of the queue close. The jobs are resumed when the next run window of the
queue opens. For example, a night queue might be configured to run jobs between 7
p.m. and 8 a.m. If a job is still running in the morning, it is suspended, and is resumed
around 7 p.m. of that day.

In contrast, when the dispatch windows of a queue or host close, jobs from that queue
or running on that host continue running. The dispatch windows control job
dispatching only.

0LJUDWLRQ

Each host and queue can be configured so that suspended checkpointable or rerunable
jobs are automatically migrated to another host. See ‘Checkpointing and Migration’ on
page 37.

6SHFLDO�&DVHV

Three special cases affect job suspension. Two cases are intended to prevent batch jobs
from suspending themselves because of their own load, and one case is intended to
allow an urgent job to run to completion despite unfavourable load conditions. If a
batch job is suspended because of its own load, the load drops as soon as the job is
suspended. When the load goes back within the thresholds, the job is resumed until it
causes itself to be suspended again.

First, when only one batch job is running on a host, the batch job is not suspended for
any reason except that the host is not idle (the it interactive idle time load index is less
than one minute). This means that once a job is started on a host, at least one job
continues to run unless there is an interactive user on the host. Once the job is
suspended, it is not resumed until all the scheduling conditions are met, so it should
not interfere with the interactive user.

Second, this case applies only for the pg (paging rate) load index. A large batch job
often causes a high paging rate. Interactive response is strongly affected by paging, so
it is desirable to suspend batch jobs that cause paging when the host has interactive
users. The PG_SUSP_IT parameter in the lsb.params file controls this behaviour. If
��

�

the host has been idle for more than PG_SUSP_IT minutes, the pg load index is not
checked against the suspending threshold.

Finally, conditions such as thresholds for hosts and queues and windows for queues
can cause a running job to be suspended. However, certain urgent jobs can be run until
completion without being suspended by these conditions. By using the -f option of
the command brun(1), an LSF administrator can force a job to run and the job will
not be suspended by LSF Batch due to load conditions. See ‘Forcing Job Execution —
brun -f’ on page 98 for details.

5HVXPLQJ�6XVSHQGHG�-REV

Jobs are suspended to prevent overloading hosts, to prevent batch jobs from
interfering with interactive use, or to allow a more urgent job to run. When the host is
no longer overloaded, suspended jobs should continue running.

LSF Batch uses queue level and host level scheduling thresholds as described in ‘Host
Load Levels’ on page 24 to decide whether a suspended job should be resumed. At the
queue level, LSF Batch also uses the RESUME_COND parameter in thelsb.queues file.
Unlike suspending conditions, all the resuming conditions must be satisfied for a job
to resume.

If there are any suspended jobs on a host, LSF Batch checks the load levels in each turn.
If the load levels are within the scheduling thresholds of both queue level and host
levels, and the resume condition RESUME_COND configured at the queue level is
satisfied, the job is resumed.

Jobs from higher priority queues are checked first. Only one job is resumed in each turn
to prevent overloading the host again.

The scheduling thresholds that control when a job is resumed are displayed by the
bjobs -l command.

8VHU�6XVSHQGHG�-REV

A job can also be suspended by its owner or the LSF administrator with the bstop
command. These jobs are considered user-suspended (displayed by bjobs as USUSP).
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
When the user restarts the job with the bresume command, the job is not started
immediately to prevent overloading. Instead, the job is changed from USUSP to SSUSP
(suspended by the system). The SSUSP job is resumed when the host load levels are
within the scheduling thresholds for that job, exactly as for jobs suspended due to high
load.

If a user suspends a high priority job from a non-preemptive queue, the load might
become low enough for LSF Batch to start a lower priority job in its place. The load
created by the low priority job can prevent the high priority job from resuming. This
can be avoided by configuring preemptive queues (see ‘Preemptive Scheduling’ on
page 32).

,QWHUDFWLYH�%DWFK�-RE�6XSSRUW

A batch job can be submitted in interactive mode such that all input and output are
through the terminal from which the bsub command is issued. The principal
advantage of running an interactive job through the LSF Batch system is that it takes
advantage of the batch scheduling policy and host selection features for resource
intensive jobs. Additionally, all statistics related to the job are recorded in the
lsb.acct file to allow a common accounting system for both interactive and non-
interactive jobs.

You can configure a queue to be interactive only, batch only, or both interactive and
batch (see ‘General Parameters’ on page 208 for details on configuring an interactive
queue). An interactive batch job is submitted by specifying the -I option to the bsub
command. An interactive batch job is scheduled using the same policy as all other jobs
in a queue. This means an interactive job can wait for a long time before it gets
dispatched. If fast response time is required, interactive jobs should be submitted to
high priority queues with loose scheduling constraints.

3UH��DQG�3RVW�H[HFXWLRQ�&RPPDQGV

Each batch job can be submitted with optional pre- and post-execution commands.
��

�

If a pre-execution command is specified, the job is held in the queue until the specified
pre-execution command returns a successful exit status (zero). While the job is
pending, other jobs can proceed ahead of the waiting job.

If a post-execution command is specified, then the command is run after the job is
finished.

Pre- and post-execution commands are arbitrary command lines.

Pre-execution commands can be used to support job starting decisions which cannot
be configured directly in LSF Batch.

Post-execution commands are typically used to clean up some state left by the pre-
execution and the job execution.

LSF Batch supports both job level and queue level pre-execution. Post-execution is only
supported at the queue level.

See ‘Queue-Level Pre-/Post-Execution Commands’ on page 224 for more information about
queue level pre- and post-execution commands, and the chapter ‘Submitting Batch Jobs’
on page 89 in the LSF Batch User’s Guide for more information about the job-level pre-
execution commands.

&KHFNSRLQWLQJ�DQG�0LJUDWLRQ

Batch jobs can be checkpointed and migrated to other hosts of the same type. LSF
supports three forms of checkpointing:

• Kernel-level checkpointing—The operating system kernel supports checkpointing
without application changes.

• User-level checkpointing—The application is linked with a special library to
support checkpoint and restart, but no source changes are required to the
application.

• Application-level checkpointing—The application has source changes that allow it
to interact with the supplied checkpointing interface commands.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
Kernel level checkpointing is currently supported on ConvexOS, Cray Unicos, IRIX 6.4
and later, and HP Exemplar systems. LSF Batch provides a uniform checkpointing
protocol to support checkpointing at all levels for all platforms by providing the
commands echkpnt and erestart (located in the LSF_SERVERDIR directory,
which is defined in the lsf.conf file—otherwise, the location is defined by the
LSF_ECHKPNTDIR environment variable).

Details of checkpointing are described in the chapter ‘Checkpointing and Migration’ on
page 165 in the LSF Batch User’s Guide.

-RE�0LJUDWLRQ

Check-pointable jobs and re-runable jobs can be migrated to another host for execution
if the current host is too busy or the host is going to be shut down. A rerunable job is a
job that is submitted with the bsub -r option and can be correctly rerun from the
beginning. Jobs can be moved from one host to another, as long as both hosts are binary
compatible and run the same version of the operating system.

The job’s owner or the LSF administrator can use the bmig command to migrate jobs.
If the job is checkpointable, the bmig command first checkpoints it. Then LSF kills the
running or suspended job, and restarts or reruns the job on another host if one is
available. If LSF is unable to rerun or restart the job due to a system or network reason,
the job reverts to PEND status and is requeued with a higher priority than any
submitted job, so it is rerun or restarted before other queued jobs are dispatched.

-RE�&RQWURO�$FWLRQV

LSF Batch needs to control jobs dispatched to a host to enforce scheduling policies, or
in response to user requests. The principal actions that the system performs on a job
include suspending, resuming, and terminating it. The actions are carried out by
sending the signal SIGSTOP for suspending a job, SIGCONT for resuming a job, and
SIGKILL for terminating a job. On NT, equivalent functions have been implemented
to perform the same tasks.

Occasionally, you might want to override the default actions. For example, instead of
suspending a job, you might want to kill or checkpoint it. The default job control
��

�

actions can be overridden by defining the JOB_CONTROLS parameter in your queue
configuration. Each queue can have its separate job control actions. See ‘Job Starter’ on
page 227 for more details.

5HVRXUFH�5HVHUYDWLRQ

When a job is dispatched, the system assumes that the resources that the job consumes
will be reflected in the load information. However, many jobs do not consume the
resources they require when they first start. Instead, they will typically use the
resources over a period of time. For example, a job requiring 100 megabytes of swap is
dispatched to a host having 150 megabytes of available swap. The job starts off initially
allocating 5 megabytes and gradually increases the amount consumed to 100
megabytes over a period of 30 minutes. During this period, another job requiring more
than 50 megabytes of swap should not be started on the same host to avoid over-
committing the resource.

Resources can be reserved to prevent over commitment by LSF Batch. Resource
reservation requirements can be specified as part of the resource requirements when
submitting a job, or can be configured into the queue level resource requirements. See
‘Queue Level Resource Reservation’ on page 214 for details about configuring resource
reservation at the queue level. For descriptions about specifying resource reservation
with job submission, see ‘Resource Reservation’ on page 91 of the LSF Batch User’s Guide.

3URFHVVRU�5HVHUYDWLRQ

When parallel jobs have to compete with sequential jobs for resources, a common
situation is that parallel jobs will find it very difficult to get enough processors to run.
This is because a parallel job needs to collect more than one job slot before it can be
dispatched. There might not be enough job slots at any one instant to satisfy a large
parallel job, but there might be enough to allow a sequential job to be started. This
might cause parallel jobs to wait forever, if there are enough sequential jobs.

Processor reservation of the LSF Batch solves this problem by reserving processors for
parallel jobs. When a parallel job cannot be dispatched because there are not enough
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
job slots to satisfy its minimum processor requirements, the currently available slots
will be reserved for the job. These reserved job slots are accumulated until there are
enough available to start the job. When a slot is reserved for a job it is unavailable to
any other job. To avoid deadlock situations, the period of reservation needs to be
configured so that the parallel job will give up the reserved job slots if it still cannot run
after the reservation period. See ‘Processor Reservation for Parallel Jobs’ on page 211 for
details about the reservation period configuration.

In addition, there are situations where the system can determine that the job reserving
the processors cannot start before a certain time. In this situation it makes sense to run
a job that is short enough to fit into the time slot during which the processors are
reserved; this is referred to as backfilling. Short jobs are said to backfill processors
reserved for large jobs. Backfilling requires that users specify how long each job will
run so that LSF Batch can estimate when a job will start and complete. Backfilling,
together with processor reservation, allows large parallel jobs to run while not
underutilizing resources.

5HPRWH�)LOH�$FFHVV

When LSF Batch runs a job, it attempts to run the job in the directory where the bsub
command was invoked. If the execution directory is under the user’s home directory,
sbatchd looks for the path relative to the user’s home directory. This handles some
common configurations, such as cross-mounting users’ home directories with the
/net automount option.

If the directory is not available on the execution host, the job is run in /tmp. Any files
created by the batch job, including the standard output and error files created by the
-o and -e options to the bsub command, are left on the execution host.

LSF Batch provides support for moving user data from the submission host to the
execution host before executing a batch job, and from the execution host back to the
submitting host after the job completes. The file operations are specified with the -f
option to bsub.

The LSF Batch remote file access mechanism uses lsrcp(1) to process the file
transfer. lsrcp first tries to connect to the RES daemon on the submission host to
handle the file transfer.
��

�

If lsrcp cannot contact the RES on the submission host, it attempts to use
rcp to copy the file. You must set up the /etc/hosts.equiv or HOME/
.rhosts file in order to use rcp. See the rcp(1) and rsh(1) manual
pages for more information on using rcp.

A site can replace lsrcp with its own file transfer mechanism as long as it supports
the same syntax as lsrcp(1). This might be done to take advantage of a faster
interconnection network, or to overcome limitations with the existing lsrcp.
sbatchd looks for the lsrcp executable in the LSF_BINDIR directory as specified in
the lsf.conf file.

For a complete description of the LSF remote file access facilities, see the bsub(1)
manual page and ‘Other bsub Options’ on page 112 of the LSF Batch User’s Guide.

-RE�5HTXHXH

A networked computing environment is vulnerable to any failure or temporary
conditions in network services or processor resources. For example, you might get NFS
stale handle errors, disk full errors, process table full errors, or network connectivity
problems. In addition, your application can also be subject to external conditions such
as a software license problem, or an occasional failure due to a bug in your application.

Such errors are temporary and probably will happen at one time but not another, or on
one host but not another. You might be upset to learn all your jobs exited due to
temporary errors and you did not know about it until 12 hours later.

LSF Batch provides a way to automatically recover from temporary errors. You can
configure certain exit values such that in case a job exits with one of the values, the job
will be automatically requeued as if it had not yet been dispatched. This job will then
be retried later. It is also possible for you to configure your queue such that a requeued
job will not be scheduled to hosts on which the job had previously failed to run. See
‘Automatic Job Requeue’ on page 231 and ‘Exclusive Job Requeue’ on page 232 for details.

UNIX
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
([WHUQDO�6XEPLVVLRQ�DQG�([HFXWLRQ�([HFXWDEOHV

Administrators can write external submission and execution time executables to
perform additional site-specific actions on jobs. These executables are called esub and
eexec and they must reside in LSF_SERVERDIR (defined in the lsf.conf file).
When a job is submitted, esub is executed if it is found in LSF_SERVERDIR. On the
execution host, eexec is run at job start-up and completion time, and when
checkpointing is initiated. The environment variable LS_EXEC_T is set to START, END,
and CHKPNT, respectively, to indicate when eexec is invoked. If esub needs to pass
some data to eexec, esub can write the data to its standard output; eexec can read
the data from its standard input. Thus, LSF is effectively implementing the pipe in
esub | eexec.

eexec is executed as the user after the job’s environment variables have been set. If
you need to run eexec as a different user, such as root, you must properly define
LSF_EEXEC_USER in the file /etc/lsf.sudoers (see ‘The lsf.sudoers File’ on page 189
for details). The parent job process waits for eexec to complete before proceeding;
thus, eexec is expected to complete. The environment variable LS_JOBPID stores the
process ID of the process that invoked eexec. If eexec is intended to monitor the
execution of the job, eexec must fork a child and then have the parent eexec process
exit. The eexec child should periodically test that the job process is still alive using the
LS_JOBPID variable.

Under LSF Batch, esub can also be used to validate the submission parameters and
reject the job. The submission parameters are saved in a file before esub is invoked (see
‘Validating Job Submissions’ on page 91 for details). esub can read the file and exit with
a special exit code to cause the job submission or modification to be aborted. A typical
use of this feature of external submission is to validate users for project membership.
If a submission parameter for the project is not valid, or the user is not permitted to
charge his job to that project, the job can be rejected.

Interactive remote execution also runs these external executables if they are found in
LSF_SERVERDIR. For example, lsrun invokes esub, and the RES runs eexec before
starting the task. esub is invoked at the time of the ls_connect(3) call, and the RES
invokes eexec each time a remote task is executed. Unlike LSF Batch, the RES runs
eexec only at task startup time.

The esub/eexec facility is used for processing DCE credentials and AFS tokens (see
‘Installation on AFS’ and ‘Installation on DCE/DFS’ in the LSF Installation Guide).
��

�

([WHUQDO�/RDG�,QGLFHV�DQG�(/,0

LSF Base contains a LIM that collects 11 built-in load indices that reflect the load
situations of CPU, memory, disk space, I/O, and interactive activities on individual
hosts.

While built-in load indices might be sufficient for most user sites, there are always user
sites with special workload or resource dependencies that require additional load
indices. LSF’s open system architecture allows users to write an External Load
Information Manager (ELIM) that gathers the additional load and shared resource
information a site needs. This ELIM can then be plugged into LIM so that they appear
as a single LIM to the users. External load indices are used in exactly the same way as
built-in load indices in various scheduling or host selection policies.

An ELIM can be as simple as a small script, or as complicated as a sophisticated C
program. A well defined protocol allows the ELIM to talk to LIM. See ‘Changing LIM
Configuration’ on page 55 for details about writing and configuring an ELIM.

([WHUQDO�*URXS�0HPEHUVKLS�'HILQLWLRQ

User group or host group definitions can be maintained outside of LSF and imported
into the LSF Batch configuration at initialization time. An executable egroup in the
LSF_SERVERDIR directory is invoked to obtain the list of members for a given group.
The group members, separated by spaces, should be written to the standard output
stream of egroup. In the LSF configuration file, the special character ‘!’ should be
specified for the group member to indicate that egroup should be invoked. See
‘External User Groups’ on page 200 and ‘Host Groups’ on page 205 for details about writing
an egroup program.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

/6)�%DWFK�&RQFHSWV�
��

�� 0DQDJLQJ�/6)�%DVH

This chapter describes the operation, maintenance, and tuning of LSF Base cluster.
Since LSF Base is essential to all LSF components, the correct operation of LSF Base is
essential to other LSF products.

0DQDJLQJ�(UURU�/RJV

Error logs contain important information about daemon operations. When you see any
abnormal behavior related to any of the LSF daemons, you should check the relevant
error logs to find out the cause of the problem.

LSF log files grow over time. These files should occasionally be cleared, either by hand
or using automatic scripts.

/6)�'DHPRQ�(UURU�/RJ

All LSF log files are reopened each time a message is logged, so if you rename or
remove a log file of an LSF daemon, the daemons will automatically create a new log
file.

The LSF daemons log messages when they detect problems or unusual situations.

The daemons can be configured to put these messages into files.

On UNIX, the message can be sent to the system error logs using the
syslog facility.

If LSF_LOGDIR is defined in the lsf.conf file, LSF daemons try to store their
messages in files in that directory. Note that LSF_LOGDIR must be writable by root.

UNIX
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
The error log file names for the LSF Base system daemons, LIM and RES, are
lim.log.hostname, res.log.hostname.

The error log file names for LSF Batch daemons are sbatchd.log.hostname,
mbatchd.log.hostname, and pim.log.hostname.

If LSF_LOGDIR is defined, but the daemons cannot write to files there, the
error log files are created in /tmp.

On Unix, if LSF_LOGDIR is not defined, then errors are logged to syslog
using the LOG_DAEMON facility. syslog messages are highly configurable,
and the default configuration varies widely from system to system. Start by
looking for the file /etc/syslog.conf, and read the manual pages for
syslog and/or syslogd.

If LSF_LOGDIR is defined, but the daemons cannot write to files there, the
error log files are created in C:\temp.

LSF daemons log error messages in different levels so that you can choose to log all
messages, or only log messages that are deemed critical. Message logging is controlled
by the parameter LSF_LOG_MASK in the lsf.conf. file. Possible values for this
parameter can be any log priority symbol that is defined in <syslog.h>. The default
value for LSF_LOG_MASK is LOG_WARNING.

If the error log is managed by syslog, it is probably already being automatically
cleared.

If LSF daemons cannot find the lsf.conf file when they start, they will not find the
definition of LSF_LOGDIR. In this case, error messages go to syslog. If you cannot
find any error messages in the log files, they are likely in the syslog.

See ‘Troubleshooting and Error Messages’ on page 239 for a discussion of common
problems and error log messages.

)/(;OP�/RJ

The FLEXlm license server daemons log messages about the state of the license servers,
and when licenses are checked in or out. This log helps to resolve problems with the
license servers and to track license use.

UNIX

NT
��

�

The FLEXlm log is configured by the lsflicsetup command as described in
‘Installing a New Permanent License’ in the LSF Installation Guide. This log file grows over
time. You can remove or rename the existing FLEXlm log file at any time. The script
lsf_license used to run the FLEXlm daemons creates a new log file when
necessary.

Note
If you already have FLEXlm server running for other products and LSF licenses are
added to the existing license file, then the log messages for FLEXlm should go to the
same place as you previously set up for other products.

&RQWUROOLQJ�/,0�DQG�5(6�'DHPRQV

The LSF cluster administrator can monitor the status of the hosts in a cluster, start and
stop the LSF daemons, and reconfigure the cluster. Many operations are performed
using the lsadmin command, which performs administrative operations on LSF Base
daemons, LIM, and RES.

&KHFNLQJ�+RVW�6WDWXV

The lshosts and lsload commands report the current status and load levels of hosts
in an LSF cluster. The lsmon and xlsmon commands provide a running display of the
same information. The LSF administrator can find unavailable or overloaded hosts
with these tools.

% lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostD ok 1.3 1.2 0.9 92% 0.0 2 20 5M 148M 88M
hostB -ok 0.1 0.3 0.7 0% 0.0 1 67 45M 25M 34M
hostA busy 8.0 *7.0 4.9 84% 4.6 6 17 1M 81M 27M

When the status of a host is proceeded by a ‘-’, it means RES is not running on that host.
In the above example, RES on hostB is down.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
5HVWDUWLQJ�/,0�DQG�5(6

LIM and RES can be restarted to upgrade software or clear persistent errors. Jobs
running on the host are not affected by restarting the daemons. The LIM and RES
daemons are restarted using the lsadmin command:

% lsadmin
lsadmin>limrestart hostD
Checking configuration files ...
No errors found.

Restart LIM on <hostD> done
lsadmin>resrestart hostD
Restart RES on <hostD> done
lsadmin>quit

Note
You must login as LSF cluster administrator to run lsadmin command.

The lsadmin command can be applied to all available hosts by using the host name
all; for example, lsadmin limrestart all. If a daemon is not responding to
network connections lsadmin displays an error message with the host name. In this
case you must kill and restart the daemon manually.

5HPRWH�6WDUWXS�RI�/,0�DQG�5(6

LSF administrators can start up any, or all, LSF daemons, on any, or all, LSF hosts, from
any host in the LSF cluster. For this to work, file lsf.sudoers has to be set up
properly to allow you to start up daemons as root. You should be able to run rsh across
LSF hosts without having to enter a password. See ‘The lsf.sudoers File’ on page 189 for
configuration details of lsf.sudoers.
��

�

The limstartup and resstartup options in lsadmin allow for the startup of the
LIM and RES daemons respectively. Specifying a host name allows for starting up a
daemon on a particular host. For example:

% lsadmin limstartup hostA
Starting up LIM on <hostA> done

% lsadmin resstartup hostA
Starting up RES on <hostA> done

The lsadmin command can be used to start up all available hosts by using the host
name all; for example, lsadmin limstartup all. All LSF daemons, including
LIM, RES, and sbatchd, can be started on all LSF hosts using the command
lsfstartup.

6KXWWLQJ�GRZQ�/,0�DQG�5(6

All LSF daemons can be shut down at any time. If the LIM daemon on the current
master host is shut down, another host automatically takes over as master. If the RES
daemon is shut down while remote interactive tasks are running on the host, the
running tasks continue but no new tasks are accepted. To shutdown LIM and RES, use
lsadmin command:

% lsadmin
lsadmin>resshutdown hostD
Shut down RES on <hostD> done
lsadmin>limshutdown hostD
Shut down LIM on <hostD> done
lsadmin>quit

You can run lsadmin reconfig while the LSF system is in use; users might be
unable to submit new jobs for a short time, but all current remote executions are
unaffected.

/RFNLQJ�DQG�8QORFNLQJ�+RVWV

A LIM can be locked to temporarily prevent any further jobs from being sent to the
host. The lock can be set to last either for a specified period of time, or until the host is
explicitly unlocked. Only the local host can be locked and unlocked.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
% lsadmin limlock
Host is locked
% lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostD ok 1.3 1.2 0.9 92% 0.0 2 20 5M 148M 28M
hostA busy 8.0 *7.0 4.9 84% 0.6 0 17 *1M 31M 7M
hostC lockU 0.8 1.0 1.1 73% 1.2 3 0 4M 44M 12M
% lsadmin limunlock
Host is unlocked

Only root and the LSF administrator can lock and unlock hosts.

0DQDJLQJ�/6)�&RQILJXUDWLRQ

2YHUYLHZ�RI�/6)�&RQILJXUDWLRQ�)LOHV

LSF configuration consists of several levels:

• lsf.conf—The primary LSF environment configuration file

• lsf.shared and lsf.cluster.cluster—Configuration files for the Load
Information Manager

• lsf.task and lsf.task.cluster—The files containing task to default
resource requirement string mappings

• LSB_CONFDIR/cluster—The directory containing configuration files for LSF
Batch

7KH�lsf.conf�)LOH

This is the generic LSF environment configuration file. This file defines general
installation parameters so that all LSF executables can find the necessary information.
This file is typically installed in the LSF_CONFDIR directory (the same directory as the
LIM configuration files), and a symbolic link is made from a convenient directory as
defined by the environment variable LSF_ENVDIR, or the default directory /etc. This
file is created by the lsfsetup during installation. Note that many of the parameters
��

�

in this file are machine specific. The contents of this file are described in detail in ‘The
lsf.conf File’ on page 161.

/,0�&RQILJXUDWLRQ�)LOHV

LIM is the kernel of your cluster that provides the single system image to all
applications. LIM reads the LIM configuration files and determines your cluster and
the cluster master host.

LIM files include lsf.shared and lsf.cluster.cluster, where cluster is the
name of your LSF cluster. These files define the host members, general host attributes,
and resource definitions for your cluster. The individual functions of each of the files
are described below.

lsf.shared defines the available resource names, host types, host models, cluster
names, and external load indices that can be used by all clusters. This file is shared by
all clusters.

lsf.cluster.cluster file is a per cluster configuration file. It contains two types
of configuration information: cluster definition information and LIM policy
information. Cluster definition information impacts all LSF applications, while LIM
policy information impacts applications that rely on LIM’s policy for job placement.

The cluster definition information defines cluster administrators, all the hosts that
make up the cluster, attributes of each individual host such as host type or host model,
and resources using the names defined in lsf.shared.

LIM policy information defines the load sharing and job placement policies provided
by LIM. More details about LIM policies are described in ‘Tuning LIM Load Thresholds’
on page 69.

LIM configuration files are stored in directory LSF_CONFDIR as defined in lsf.conf
file. Details of LIM configuration files are described in ‘The lsf.shared File’ on page 173.

7KH�lsf.task�)LOH�

lsf.task is a system-wide task to ‘default resource requirement string’ mapping file.
This file defines mappings between task names and their default resource
requirements. LSF maintains a task list for each user in the system. The lsf.task file
is useful for the cluster administrator to set task-to-resource requirement mapping at
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
the system level. Individual users can customize their own list by using the lsrtasks
command (See lsrtasks(1) man page for details on this command).

When you run a job with an LSF command such as bsub or lsrun, the command
consults your task list to find out the default resource requirement string of the job if
they are not already specified explicitly. If a match is not found in your task list, the
system will assume a default, which typically means run the job on a host that has the
same host type as the local host.

There is also a per cluster file lsf.task.cluster that applies to the cluster only and
overrides the system-wide definition. Individual users can have their own files to
override the system-wide and cluster-wide files by using the lsrtasks command.

lsf.task and lsf.task.cluster files are installed in directory LSF_CONFDIR as
defined in lsf.conf file.

/6)�%DWFK�&RQILJXUDWLRQ�)LOHV

These files define LSF Batch specific configuration such as queues, batch server hosts,
and batch user controls. These files are only read by mbatchd. The LSF Batch
configuration relies on LIM configuration. LSF Batch daemons get the cluster
configuration information from the LIM via the LSF API.

LSF Batch configuration files are stored in directory LSB_CONFDIR/cluster, where
LSB_CONFDIR is defined in lsf.conf, and cluster is the name of your cluster.
Details of LSF Batch configuration files are described in ‘Managing LSF Batch’ on
page 79.

&RQILJXUDWLRQ�)LOH�)RUPDWV

All configuration files except lsf.conf use a section-based format. Each file contains
a number of sections. Each section starts with a line beginning with the reserved word
Begin followed by a section name, and ends with a line beginning with the reserved
word End followed by the same section name. Begin, End, section names, and
keywords are all case insensitive.

Sections can either be vertical or horizontal. A horizontal section contains a number of
lines, each having the format: keyword = value, where value is one or more strings.
For example:
��

�

Begin exampleSection
key1 = string1
key2 = string2 string3
key3 = string4
End exampleSection

Begin exampleSection
key1 = STRING1
key2 = STRING2 STRING3
End exampleSection

In many cases you can define more than one object of the same type by giving more
than one horizontal section with the same section name.

A vertical section has a line of keywords as the first line. The lines following the first
line are values assigned to the corresponding keywords. Values that contain more than
one string must be bracketed with ‘(’ and ‘)’. The above examples can also be expressed
in one vertical section:

Begin exampleSection
key1 key2 key3
string1 (string2 string3) string4
STRING1 (STRING2 STRING3) -
End exampleSection

Each line in a vertical section is equivalent to a horizontal section with the same section
name.

Some keys in certain sections are optional. For a horizontal section, an optional key
does not appear in the section if its value is not defined. For a vertical section, an
optional keyword must appear in the keyword line if any line in the section defines a
value for that keyword. To specify the default value use ‘-’ or ‘()’ in the corresponding
column, as shown for key3 in the example above.

Each line can have multiple columns, separated by either spaces or TAB characters.
Lines can be extended by a ‘\’ (back slash) at the end of a line. A ‘#’ (pound sign)
indicates the beginning of a comment; characters up to the end of the line are not
interpreted. Blank lines are ignored.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
([DPSOH�&RQILJXUDWLRQ�)LOHV

Below are some examples of LIM configuration files. The detailed explanations of the
variables are described in ‘LSF Base Configuration Reference’ on page 161.

Example lsf.shared file

Begin Cluster
ClusterName # This line is keyword(s)
test_cluster
End Cluster

Begin HostType
TYPENAME # This line is keyword(s)
hppa
SUNSOL
rs6000
alpha
NTX86
End HostType

Begin HostModel
MODELNAME CPUFACTOR # This line is keyword(s)
HP735 4.0
DEC3000 5.0
ORIGIN2K 8.0
PENTI120 3.0
End HostModel

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION #This line is keyword(s)
hpux Boolean () () (HP-UX operating system)
decunix Boolean () () (Digital Unix)
solaris Boolean () () (Sun Solaris operating system)
NT Boolean () () (Windows NT operating system)
fserver Boolean () () (File Server)
cserver Boolean () () (Compute Server)
scratch Numeric 30 N (Shared scratch space on server)
verilog Numeric 30 N (Floating licenses for Verilog)
console String 30 N (User Logged in on console)
End Resource
��

�

Example lsf.cluster.test_cluster file:

Begin ClusterManager
Manager = lsf user7
End ClusterManager

Begin Host
HostNAme Model Type server swp Resources
hostA HP735 hppa 1 2 (fserver hpux)
hostD ORIGIN2K sgi 1 2 (cserver)
hostB PENT200 NTX86 1 2 (NT)
End Host

In the above file, section ClusterManager takes horizontal format, while Host
section takes vertical format.

Other LSF Batch configuration files are described in ‘Example LSF Batch Configuration
Files’ on page 136.

&KDQJLQJ�/,0�&RQILJXUDWLRQ

This section provides procedures for some common changes to the LIM configuration.
There are three different ways for you to change LIM configuration:

• Use the lsfsetup program as described in various sections of the LSF Installation
Guide

• Edit individual files using a text editor

• Use the xlsadmin tool (a graphical application).

The following discussions focus on changing configuration files using a text editor so
that you can understand the concepts behind the configuration changes. See ‘Managing
an LSF Cluster Using xlsadmin’ on page 99 for the use of xlsadmin in changing
configuration files.

Note
If you run LSF Batch, you must restart mbatchd using the badmin reconfig
command each time you change the LIM configuration, even if the LSF Batch
configuration files do not change. This is necessary because the LSF Batch
configuration depends on the LIM configuration.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
$GGLQJ�D�+RVW�WR�D�&OXVWHU

Step 1 If you are adding a host of a new host type, make sure you perform the steps
described in ‘Installing an Additional Host Type’ in the LSF Installation Guide
first.

Step 2 If you are adding a host of a type for which you have already installed LSF
binaries, make sure that the LSF binaries, configuration files, and working
directories are NFS-mounted on the new host. For each new host you add,
follow the host setup procedure as described in ‘Adding an Additional Host to an
Existing Cluster’ in the LSF Installation Guide.

Step 3 If you are adding a new host type to the cluster, modify the HostType section
of the lsf.shared file to add the new host type. A host type can be any
alphanumeric string up to 29 characters long.

Step 4 If you are adding a new host model, modify the HostModel section of your
lsf.shared file to add in the new model together with its CPU speed factor
relative to other models.

Step 5 For each host you add into the cluster, you should add a line to the Host
section of the lsf.cluster.cluster file with host name, host type, and all
other attributes defined, as shown in ‘Example Configuration Files’ on page 54.

The master LIM and mbatchd daemons run on the first available host in the
Host section of your lsf.cluster.cluster file, so you should list reliable
batch server hosts first. For more information see ‘Fault Tolerance’ on page 5.

If you are adding a client host, set the SERVER field for the host to 0 (zero).

Step 6 Reconfigure your LSF cluster so that LIM knows that you have added a new
host to the cluster. Follow instructions in ‘Reconfiguring an LSF Cluster’ on
page 62. If you are adding more than one host, perform this step after you have
performed steps 1 to 6 for all added hosts.

Step 7 If you are adding hosts as LSF Batch server hosts, add these hosts to the LSF
Batch configuration by following steps described in ‘Restarting sbatchd’ on
page 85.
��

�

Step 8 Start the LSF daemons on the newly added host(s) by running
LSF_SERVERDIR/lsf_daemons start and use ps to make sure that res,
lim and sbatchd have started.

CAUTION!
The lsf daemons start command must be run as root. If you are creating
a private cluster, do not attempt to use lsf_daemons to start your daemons,
as this command will kill all running daemons on the system before starting
new ones. Start them manually.

5HPRYLQJ�+RVWV�)URP�D�&OXVWHU

Step 1 If you are running LSF Batch, make sure you remove unwanted hosts from the
LSF Batch first following steps described in ‘Restarting sbatchd’ on page 85.

Step 2 Edit your lsf.cluster.cluster file and remove the unwanted hosts from
the Host section.

Step 3 Log in to any host in the cluster as the LSF administrator. Run:
lsadmin resshutdown host1 host2 ...
where host1, host2, ... are hosts you want to remove from your cluster.

Step 4 Follow instructions in ‘Reconfiguring an LSF Cluster’ on page 62 to reconfigure
your LSF cluster. The LIMs on the removed hosts will quit upon
reconfiguration.

5HPRYLQJ�+RVWV�)URP�D�&OXVWHU

Step 1 Remove the LSF section from the host’s system startup files. This
undoes what you have done previously to start LSF daemons at
boot time. See ‘Starting LSF Servers at Boot Time’ in the LSF
Installation Guide for details.

Step 2 If any users use lstcsh as their login shell, change their login shell
to tcsh or csh. Remove lstcsh from the /etc/shells file.

UNIX
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
&XVWRPL]LQJ�+RVW�5HVRXUFHV

Your cluster is most likely heterogeneous. Even if your computers are all the same, it
might still be heterogeneous. For example, some machines are configured as file
servers, while others are compute servers; some have more memory, others have less;
some have four CPUs, others have only one; some have host-locked software licenses
installed, others do not.

LSF provides powerful resource selection mechanisms so that correct hosts with
required resources are chosen to run your jobs. For maximum flexibility, you should
characterize your resources clearly enough so that users have satisfactory choices. For
example, if some of your machines are connected to both Ethernet and FDDI, while
others are only connected to Ethernet, then you probably want to define a resource
called fddi and associate the fddi resource to machines connected to FDDI. This way,
users can specify resource fddi if they want their jobs to run on machines connected
to FDDI.

To customize host resources for your cluster, perform the following procedure:

Step 1 Log in to any host in the cluster as the LSF administrator.

Step 2 Define new resource names by modifying the “Resource” section of the
lsf.shared file. Add a brief description to each of the added resource
names. Resource descriptions will be displayed to a user by lsinfo
command.

Step 3 If you want to associate added resource names to an application, edit
lsf.task file properly to reflect the resource in the resource requirements of
the application. Alternatively, you can leave this to individual users who can
use lsrtasks command to customize their own files.

Step 4 Edit the lsf.cluster.cluster file to modify the RESOURCES column of
the “Host” section so that all hosts that have the added resources will now
have the added resource names in that column.

Step 5 Follow instructions in ‘Reconfiguring an LSF Cluster’ on page 62 to reconfigure
your LSF cluster.
��

�

&RQILJXULQJ�5HVRXUFHV�LQ�/6)�%DVH

Resources are defined in the Resource section of the lsf.shared file. The definition
of a resource involves specifying a name and description, as well as, optionally, the
type of its value, its update interval, and whether a higher or lower value indicates
greater availability.

The mandatory resource information fields are:

• A RESOURCENAME indicating the name of the resource

• A DESCRIPTION that should indicate what the resource represents.

The optional resource information fields are:

• A TYPE indicating its value (boolean, numeric, or string)

• An INTERVAL indicating how often the value is updated (for resources whose
value changes dynamically)

• An INCREASING flag indicating whether a higher value represents a greater
availability of the resource (for numeric resources which can be used for
scheduling jobs).

When the optional attributes are not specified, the resource is treated as static and
boolean-valued.

The following is a sample of a Resource section from an lsf.shared file:

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
mips Boolean () () (MIPS architecture)
dec Boolean () () (DECStation system)
sparc Boolean () () (SUN SPARC)
hppa Boolean () () (HPPA architecture)
bsd Boolean () () (BSD unix)
sysv Boolean () () (System V UNIX)
hpux Boolean () () (HP-UX UNIX)
aix Boolean () () (AIX UNIX)
nt Boolean () () (Windows NT)
scratch Numeric 30 N (Shared scratch space on server)
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
synopsys Numeric 30 N (Floating licenses for Synopsys)
verilog Numeric 30 N (Floating licenses for Verilog)
console String 30 N (User Logged in on console)
End Resource

There is no distinction between shared and non-shared resources in the resource
definition in the lsf.shared file.

Note
The NewIndex section in the lsf.shared file is obsolete. To achieve the same
effect, the Resource section of the lsf.shared file can be used to define a dynamic
numeric resource, and the default keyword can be used in the LOCATION field of
the ResourceMap section of the lsf.cluster.cluster file.

$VVRFLDWLQJ�5HVRXUFHV�ZLWK�+RVWV

Resources are associated with the host(s) on which they are available in the
ResourceMap section of the lsf.cluster.cluster file (where cluster is the
name of the cluster). The following fields must be completed for each resource:

• A RESOURCENAME indicating the name of the resource, as defined in the
lsf.shared file

• A LOCATION indicating whether the resource is shared or non-shared, across
which hosts, and with which initial value(s).

The following is an example of a ResourceMap section from an
lsf.cluster.cluster file:

Begin ResourceMap
RESOURCENAME LOCATION
verilog 5@[all]
synopsys (2@[apple] 2@[others])
console (1@[apple] 1@[orange])
End ResourceMap

The possible states of a resource that may be specified in the LOCATION column are:

• Each host in the cluster has the resource
��

�

• The resource is shared by all hosts in the cluster

• There are multiple instances of a resource within the cluster, and each instance is
shared by a unique subset of hosts.

For static resources, the LOCATION column should contain the value of the resource.

The syntax of the information in the LOCATION field takes one of two forms. For static
resources, where the value must be specified, use:

• (value1@[host1 host2 ...] value2@[host3 host4] ...)

For dynamic resources, where the value is updated by an ELIM, use:

• ([host1 host2 ...] [host3 host4 ...] ...)

Each set of hosts listed within the square brackets specifies an instance of the resource.
All hosts within the instance share the resource whose quantity is indicated by its
value. In the above example, host1, host2,... form one instance of the resource,
host3, host4,... form another instance, and so on.

Note
The same host cannot be in more than one instance of a resource.

Three predefined words have special meaning in this specification:

• all refers to all the server hosts in the cluster; for example, value@[all] means
the resource is shared by all server hosts in the cluster made up of host1 host2
... hostn

• others refers to the rest of the server hosts listed in the cluster; for example,
(2@[apple] 2[others]) means there are 2 units of "syno" on apple, and 2
shared by all other hosts

• default refers to each host; for example, value@[default] is equivalent to
(value@[host1] value@[host2] ... value@[hostn]) where host1, ...
hostn are all server hosts in the cluster.

These syntax examples assume that static resources (requiring values) are being
specified. For dynamic resources, use the same syntax but omit the value.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
The following items should be taken into consideration when configuring resources
under LSF Base.

In the lsf.cluster.cluster file, the Host section must precede the ResourceMap
section since the ResourceMap section uses the host names defined in the Host
section.

• The RESOURCES column in the Host section of the lsf.cluster.cluster file
should be used to associate static boolean resources with particular hosts. Using
the ResourceMap section for static boolean resources section will result in an
empty RESOURCES column in the lshosts(1) display.

• All resources specified in the ResourceMap section are treated as shared
resources, which are displayed using the lsload -s or lshosts -s commands.
The exception is for dynamic numeric resources specified using the default
predefined word. These will be treated together with load indices such as mem and
swap and are viewed using the lsload -l command.

If the ResourceMap section is not defined, then any dynamic resources specified in
lsf.shared are considered to be host-based (the resource is available on each host in
the cluster).

5HFRQILJXULQJ�DQ�/6)�&OXVWHU

After changing LIM configuration files, you must tell LIM to read the new
configuration. Use the lsadmin command to tell LIM to pick up the new
configuration.

Operations can be specified on the command line or entered at a prompt. Run the
lsadmin command with no arguments, and enter help to see the available
operations.

The lsadmin reconfig command checks the LIM configuration files for errors. If no
errors are found, the command confirms that you want to restart the LIMs on all hosts,
and reconfigures all the LIM daemons:
��

�

% lsadmin reconfig
Checking configuration files ...
No errors found.

Do you really want to restart LIMs on all hosts? [y/n] y
Restart LIM on <hostD> done
Restart LIM on <hostA> done
Restart LIM on <hostC> done

In the above example, no errors are found. If any non-fatal errors are found, the
command asks you to confirm the reconfiguration. If fatal errors are found, the
reconfiguration is aborted.

If you want to see details on any errors, run the command lsadmin ckconfig -v.
This reports all errors to your terminal.

If you change the configuration file of LIM, you should also reconfigure LSF Batch by
running badmin reconfig because LSF Batch depends on LIM configuration. If you
change the configuration of LSF Batch, then you only need to run badmin reconfig.

([WHUQDO�5HVRXUFH�&ROOHFWLRQ

The values of static external resources are specified through the
lsf.cluster.cluster configuration file. All dynamic resources, regardless of
whether they are shared or host-based, are collected through an ELIM. An ELIM is
started in the following situations:

• On every host if any dynamic resource is configured as host-based. For example,
if the LOCATION field in the ResourceMap section of lsf.cluster.cluster is
([default]), then every host will start an ELIM.

• On the master host for any cluster-wide resources. For example, if the LOCATION
field in the ResourceMap section of lsf.cluster.cluster is ([all]), then
an ELIM is started on the master host.

• On the first host specified for each instance, if multiple instances of the resource
exist within the cluster. For example, if the LOCATION field in the ResourceMap
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
section of lsf.cluster.cluster is ([hostA hostB hostC] [hostD
hostE hostF]), then an ELIM will be stared on hostA and hostD to report the
value of that resource for that set of hosts.

If the host reporting the value for an instance goes down, then an ELIM is started
on the next available host in the instance. In above example, if hostA became
unavailable, an ELIM is started on hostB. If the hostA becomes available again
then the ELIM on hostB is shut down and the one on hostA is started.

Note
There is only one ELIM on each host, regardless of the number of resources on which
it reports. If only cluster-wide resources are to be collected, then an ELIM will only be
started on the master host. When LIM starts, the following environment variables are
set for ELIM:

• LSF_MASTER: This variable is defined if the ELIM is being invoked on the master
host. It is undefined otherwise. This can be used to test whether the ELIM should
report on cluster-wide resources that only need to be collected on the master host.

• LSF_RESOURCES: This variable contains a list of resource names (separated by
spaces) on which the ELIM is expected to report. A resource name is only put in
the list if the host on which the ELIM is running shares an instance of that resource.

5HVWULFWLRQV

The following restrictions apply to the use of shared resources in LSF products.

• A shared resource cannot be used as a load threshold in the Hosts section of the
lsf.cluster.cluster file.

• A shared resource cannot be used in the loadSched/loadStop thresholds, or in
the STOP_COND or RESUME_COND parameters in the queue definition in the
lsb.queues file.

:ULWLQJ�DQ�([WHUQDO�/,0

The ELIM can be any executable program, either an interpreted script or compiled
code. Example code for an ELIM is included in the examples directory in the LSF
��

�

distribution. The elim.c file is an ELIM written in C. You can customize this example
to collect the load indices you want.

The ELIM communicates with the LIM by periodically writing a load update string to
its standard output. The load update string contains the number of indices followed by
a list of name-value pairs in the following format:

N name1 value1 name2 value2 ... nameN valueN

For example,

3 tmp2 47.5 nio 344.0 licenses 5

This string reports three indices: tmp2, nio, and licenses, with values 47.5, 344.0,
and 5 respectively. Index values must be numbers between -INFINIT_LOAD and
INFINIT_LOAD as defined in the lsf.h header file.

If the ELIM is implemented as a C program, as part of initialization it should use
setbuf(3) to establish unbuffered output to stdout.

The ELIM should ensure that the entire load update string is written successfully to
stdout. This can be done by checking the return value of printf(3s) if the ELIM is
implemented as a C program or as the return code of /bin/echo(1) from a shell
script. The ELIM should exit if it fails to write the load information.

Each LIM sends updated load information to the master every 15 seconds. Depending
on how quickly your external load indices change, the ELIM should write the load
update string at most once every 15 seconds. If the external load indices rarely change,
the ELIM can write the new values only when a change is detected. The LIM continues
to use the old values until new values are received.

The executable for the ELIM must be in LSF_SERVERDIR and must have the name
elim. If LIM expects some resources to be collected by an ELIM according to
configuration, it invokes the ELIM automatically on startup. The ELIM runs with the
same user id and file access permission as the LIM.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
The LIM restarts the ELIM if it exits; to prevent problems in case of a fatal error in the
ELIM, it is restarted at most once every 90 seconds. When the LIM terminates, it sends
a SIGTERM signal to the ELIM. The ELIM must exit upon receiving this signal.

2YHUULGLQJ�%XLOW�,Q�/RDG�,QGLFHV

The ELIM can also return values for the built-in load indices. In this case the value
produced by the ELIM overrides the value produced by the LIM. The ELIM must
ensure that the semantics of any index it supplies are the same as that of the
corresponding index returned by the lsinfo(1) command.

For example, some sites prefer to use /usr/tmp for temporary files. To override the
tmp load index, write a program that periodically measures the space in the /usr/tmp
file system and writes the value to standard output. Name this program elim and
store it in the LSF_SERVERDIR directory.

Note
The name of an external load index must not be one of the resource name aliases cpu,
idle, logins, or swap. To override one of these indices, use its formal name: r1m,
it, ls, or swp.

You must configure the external load index even if you are overriding a built-in load
index.

/,0�3ROLFLHV

LIM provides very critical services to the all LSF components. In addition to the timely
collection of resource information, LIM also provides host selection and job placement
policies. If you are using the LSF MultiCluster product, LIM policies also determine
how different clusters should exchange load and resource information.

LIM policies are advisory information for applications. Applications can either use the
placement decision from the LIM, or make further decisions based on information
from the LIM.
��

�

Most of the LSF interactive tools, such as lsrun and lstcsh, use LIM policies to place
jobs on the network. LSF Batch uses load and resource information from LIM and
makes its own placement decisions based on other factors in addition to load
information.

As was described in ‘Overview of LSF Configuration Files’ on page 50, LIM configuration
file defines load-sharing policies. The LIM configuration parameters that affect LIM
policies include:

• Load threshold parameters. These define the conditions beyond which a host is
considered busy by LIM. No jobs will be dispatched to a busy host by LIM’s policy.
Each of these parameters is a load index value, so that if the host load goes beyond
that value, the host becomes busy.

If a particular load index is not specified, then LIM assumes that there is no
threshold for that load index. Define looser values for load thresholds if you want
to aggressively run jobs on a host. See ‘Threshold Fields’ on page 184 for details about
load thresholds.

• Dispatch window parameter. This defines one or more time windows during
which a host is considered available for sharing a load from other hosts. If the
current time is outside all the defined time windows, the host is considered locked
and LIM will not advise any applications to run jobs on the host.

If you do not want LIM to place jobs to some hosts during certain hours, you can
define run windows for these hosts in the lsf.cluster.cluster. Dispatch
windows in lsf.cluster.cluster cause hosts to become locked outside the
time windows so that LIM will not advise jobs to go to those hosts. Details of this
parameter are described in ‘Hosts’ on page 182.

Note
LIM thresholds and run windows affect the job placement advice of the LIM. Job
placement advice is not enforced by LIM. LSF Batch, for example, does not follow the
policies of the LIM.

• Intercluster policies. These are parameters specified in the RemoteClusters section
of the lsf.cluster.cluster file. These parameters apply to LSF MultiCluster
product only. The parameters define the relationship between the local cluster and
remote clusters and the direction of job placement flows across clusters. See
‘Managing LSF MultiCluster’ on page 143 for details.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
There are two main goals in adjusting the LIM configuration parameters: improving
response time, and reducing interference with interactive use. To improve response
time, LSF should be tuned to correctly select the best available host for each job. To
reduce interference, LSF should be tuned to avoid overloading any host.

7XQLQJ�&38�)DFWRUV

CPU factors are used to differentiate the relative speed of different machines. LSF runs
jobs on the best possible machines so that the response time is minimized. To achieve
this, it is important that you define correct CPU factors for each machine model in your
cluster by changing the HostModel section of your lsf.shared file.

CPU factors should be set based on a benchmark that reflects your work load. (If there
is no such benchmark, CPU factors can be set based on raw CPU power.) The CPU
factor of the slowest hosts should be set to one, and faster hosts should be proportional
to the slowest. For example, consider a cluster with two hosts, hostA and hostB,
where hostA takes 30 seconds to run your favourite benchmark and hostB takes 15
seconds to run the same test. hostA should have a CPU factor of 1, and hostB (since
it is twice as fast) should have a CPU factor of 2.

LSF uses a normalized CPU performance rating to decide which host has the most
available CPU power. The normalized ratings can be seen by running the lsload -N
command. The hosts in your cluster are displayed in order from best to worst.
Normalized CPU run queue length values are based on an estimate of the time it would
take each host to run one additional unit of work, given that an unloaded host with
CPU factor 1 runs one unit of work in one unit of time.

Incorrect CPU factors can reduce performance in two ways. If the CPU factor for a host
is too low, that host may not be selected for job placement when a slower host is
available. This means that jobs would not always run on the fastest available host. If
the CPU factor is too high, jobs are run on the fast host even when they would finish
sooner on a slower but lightly loaded host. This causes the faster host to be overused
while the slower hosts are underused.

Both of these conditions are somewhat self-correcting. If the CPU factor for a host is too
high, jobs are sent to that host until the CPU load threshold is reached. The LIM then
marks that host as busy, and no further jobs will be sent there. If the CPU factor is too
��

�

low, jobs may be sent to slower hosts. This increases the load on the slower hosts,
making LSF more likely to schedule future jobs on the faster host.

7XQLQJ�/,0�/RDG�7KUHVKROGV

The Host section of the lsf.cluster.cluster file can contain busy thresholds for
load indices. You do not need to specify a threshold for every index; indices that are
not listed do not affect the scheduling decision. These thresholds are a major factor in
influencing LSF performance. This section does not describe all LSF load indices; see
‘Resource Requirements’ on page 24 and ‘Threshold Fields’ on page 184 for more complete
discussions.

The parameters that most often affect performance are:

r15s
15-second average

r1m
1-minute average

r15m
15-minute average

pg
paging rate in pages per second

swp
Available swap space

For tuning these parameters, you should compare the output of lsload to the
thresholds reported by lshosts -l.

The lsload and lsmon commands display an asterisk ‘*' next to each load index that
exceeds its threshold. For example, consider the following output from lshosts -l
and lsload:
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
% lshosts -l
HOST_NAME: hostD
...
LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem
- 3.5 - - 15 - - - - 2M 1M

HOST_NAME: hostA
...
LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem
- 3.5 - - 15 - - - - 2M 1M

% lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem

hostD ok 0.0 0.0 0.0 0% 0.0 6 0 30M 32M 10M

hostA busy 1.9 2.1 1.9 47% *69.6 21 0 38M 96M 60M

In this example, hostD is ok. However, hostA is busy; the pg (paging rate) index is
69.6, above the threshold of 15.

Other monitoring tools such as xlsmon also help to show the effects of changes.

If the LIM often reports a host to be busy when the CPU run queue length is low, the
most likely cause is the paging rate threshold. Different operating systems assign
subtly different meanings to the paging rate statistic, so the threshold needs to be set
at different levels for different host types. In particular, HP-UX systems need to be
configured with significantly higher pg values; try starting at a value of 50 rather than
the default of 15.

If the LIM often shows systems busy when the CPU utilization and run queue lengths
are relatively low and the system is responding quickly, try raising the pg threshold.
There is a point of diminishing returns; as the paging rate rises, eventually the system
spends too much time waiting for pages and the CPU utilization decreases. Paging rate
is the factor that most directly affects perceived interactive response. If a system is
paging heavily, it feels very slow.

The CPU run queue threshold can be reduced if you find that interactive jobs slow
down your response too much while the LIM still reports your host as ok. Likewise, it
can be increased if hosts become busy at too low a load.
��

�

On multi-processor systems, the CPU run queue threshold is compared to the effective
run queue length as displayed by the lsload -E command. The run queue threshold
should be configured as the load limit for a single processor. Sites with a variety of
uniprocessor and multi-processor machines can use a standard value for r15s, r1m
and r15m in the configuration files, and the multi-processor machines will
automatically run more jobs. Note that the normalized run queue length printed by
lsload -N is scaled by the number of processors. See Section 4, ‘Resources’, beginning
on page 35 of the LSF Batch User’s Guide and lsfintro(1) for the concept of effective
and normalized run queue lengths.

&OXVWHU�0RQLWRULQJ�ZLWK�/6)

Because LSF takes a wide variety of measurements on the hosts in your network, it can
be a powerful tool for monitoring and capacity planning. The lsmon command gives
updated information that can quickly identify problems such as inaccessible hosts or
unusual load levels. The lsmon -L option logs the load information to a file for later
processing. See the lsmon(1) and lim.acct(5) manual pages for more
information.

For example, if the paging rate (pg) on a host is always high, adding memory to the
system will give a significant increase in both interactive performance and total
throughput. If the pg index is low but the CPU utilization (ut) is usually more than 90
percent, the CPU is the limiting resource. Getting a faster host, or adding another host
to the network, would provide the best performance improvement. The external load
indices can be used to track other limited resources such as user disk space, network
traffic, or software licenses.

The xlsmon program is a Motif graphic interface to the LSF load information. The
xlsmon display uses colour to highlight busy and unavailable hosts, and can show
both the current levels and scrolling histories of selected load indices.

See Section 3, ‘Cluster Information’, beginning on page 25 of the LSF Batch User’s Guide for
more information about xlsmon.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
/6)�/LFHQVH�0DQDJHPHQW

LSF software is licensed using the FLEXlm license manager from Globetrotter
Software, Inc. The LSF license key controls the hosts allowed to run LSF. The
procedures for obtaining, installing, and upgrading license keys are described in
‘Getting License Key Information’ and ‘Setting Up the License Key’ in the LSF Installation
Guide. This section provides background information on FLEXlm.

FLEXlm controls the total number of hosts configured in all your LSF clusters. You can
organize your hosts into clusters however you choose. Each server host requires at
least one license; multi-processor hosts require more than one, as a function of the
number of processors. Each client host requires 1/5 of a license.

LSF uses two kinds of FLEXlm license: time-limited DEMO licenses and permanent
licenses.

The DEMO license allows you to try LSF out on an unlimited number of hosts on any
supported host type. The trial period has a fixed expiry date, and the LSF software will
not function after that date. DEMO licenses do not require any additional daemons.

Permanent licenses are the most common. A permanent license limits only the total
number of hosts that can run the LSF software, and normally has no time limit. You can
choose which hosts in your network will run LSF, and how they are arranged into
clusters. Permanent licenses are counted by a license daemon running on one host on
your network.

For permanent licenses, you need to choose a license server host and send hardware
host identification numbers for the license server host to your software vendor. The
vendor uses this information to create a permanent license that is keyed to the license
server host. Some host types have a built-in hardware host ID; on others, the hardware
address of the primary LAN interface is used.

+RZ�)/(;OP�:RUNV

FLEXlm is used by many software packages because it provides a simple and flexible
method for controlling access to licensed software. A single FLEXlm license server can
handle licenses for many software packages, even if those packages come from
different vendors. This reduces the systems administration load, since you do not need
to install a new license manager every time you get a new package.
��

�

7KH�/LFHQVH�6HUYHU�'DHPRQ

FLEXlm uses a daemon called lmgrd to manage permanent licenses. This daemon
runs on one host on your network, and handles license requests from all applications.
Each license key is associated with a particular software vendor. lmgrd automatically
starts a vendor daemon; the LSF version is called lsf_ld and is provided by
Platform Computing Corporation. The vendor daemon keeps track of all licenses
supported by that vendor. DEMO licenses do not require you to run license daemons.

The license server daemons should be run on a reliable host, since licensed software
will not run if it cannot contact the server. The FLEXlm daemons create very little load,
so they are usually run on the file server. If you are concerned about availability, you
can run lmgrd on a set of three or five hosts. As long as a majority of the license server
hosts are available, applications can obtain licenses.

7KH�/LFHQVH�)LOH

Software licenses are stored in a text file. The default location for this file is
/usr/local/flexlm/licenses/license.dat, but this can be overridden. For
example, when LSF is installed following the default installation procedure, the license
file is installed in the same directory where all LSF configuration files are installed; for
example, /usr/local/lst/mnt/conf. The license file must be readable on every
host that runs licensed software. It is most convenient to place the license file in a
shared NFS directory.

The license.dat file normally contains:

• A SERVER line for each FLEXlm server host. The SERVER line contains the host
name, hardware host ID, and network port number for the server.

• A DAEMON line for each software vendor, which gives the file path name of the
vendor daemon.

• A FEATURE line for each software license. This line contains the number of copies
that can be run, along with other necessary information.

The FEATURE line contains an encrypted code to prevent tampering. For permanent
licenses, the licenses granted by the FEATURE line can be accessed only through license
servers listed on the SERVER lines.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
For DEMO licenses, no FLEXlm daemons are needed, so the license file contains only
the FEATURE line.

Here is an example of a DEMO license file.

FEATURE lsf_base lsf_ld 3.100 20-Dec-1997 0 5CE371439854221102F7 "Platform" DEMO
FEATURE lsf_batch lsf_ld 3.100 20-Dec-1997 0 3CC371C33076712F433B "Platform" DEMO
FEATURE lsf_multicluster lsf_ld 3.100 20-Dec-1997 0 5C63119330771250944C "Platform" DEMO

This license file allows a site to run LSF Base, Batch, and MultiCluster until December
20, 1997. Note that a DEMO license does not have a SERVER line and a DAEMON line
because no license server is needed for DEMO licenses.

The following is an example of a permanent license:

SERVER hostD 690a377d 1700
DAEMON lsf_ld /usr/local/lsf/etc/lsf_ld
FEATURE lsf_base lsf_ld 3.100 1-jan-0000 1000 5C239486C4D72739BAF8 "Platform"
FEATURE lsf_batch lsf_ld 3.100 1-jan-0000 1000 6CB344F6E2A5B7A31526 "Platform"
FEATURE lsf_multicluster lsf_ld 3.100 1-jan-0000 1000 5C535446DAE5DEE6B736 "Platform"

LSF uses the notion of license units in calculating the amount of licenses required for a
product on a host. The number of license units required to run LSF depends on the
number of CPUs the host has as well as the type of the machine. For example, a single
CPU HP-UX machine would require ten license units, whereas a client-only machine
would need two license units.

The above license is configured to run on hostD, using TCP port 1700. This license
allows 1000 license units for version 3.1 of LSF Base, LSF Batch, and LSF MultiCluster.

/LFHQVH�0DQDJHPHQW�8WLOLWLHV�

FLEXlm provides several utility programs for managing software licenses. These
utilities and their manual pages are included in the LSF software distribution.

Because these utilities can be used to shut down the FLEXlm license server, and thus
prevent licensed software from running, they are installed in the LSF_SERVERDIR
directory. The file permissions are set so that only root and members of group 0 can use
them.

The utilities included are:
��

�

lmcksum
Calculate check sums of the license key information

lmdown
Shut down the FLEXlm server

lmhostid
Display the hardware host ID

lmremove
Remove a feature from the list of checked out features

lmreread
Tell the license daemons to re-read the license file

lmstat
Display the status of the license servers and checked out licenses

lmver
Display the FLEXlm version information for a program or library

For complete details on these commands, see the on-line manual pages.

8SGDWLQJ�DQ�/6)�/LFHQVH

FLEXlm only accepts one license key for each feature listed in a license key file. If there
is more than one FEATURE line for the same feature, only the first FEATURE line is
used. To add hosts to your LSF cluster, you must replace the old FEATURE line with a
new one listing the new total number of licenses.

The procedure for updating a license key file to include new license keys is described
in ‘Adding a Permanent License’ in the LSF Installation Guide.

&KDQJLQJ�WKH�)/(;OP�6HUYHU�7&3�3RUW

The fourth field on the SERVER line specifies the TCP port number that the FLEXlm
server uses. Choose an unused port number. LSF usually uses port numbers in the
range 3879 to 3882, so the numbers from 3883 forward are good choices. If the lmgrd
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DVH�
daemon complains that the license server port is in use, you can choose another port
number and restart lmgrd.

For example, if your license file contains the line:

SERVER hostname host-id 1700

and you want your FLEXlm server to use TCP port 3883, change the SERVER line to:

SERVER hostname host-id 3883

0RGLI\LQJ�/6)�3URGXFWV�DQG�/LFHQVLQJ

LSF Suite 3.1 includes the following products: LSF Base, LSF Batch, LSF JobScheduler,
LSF MultiCluster, and LSF Analyzer.

The configuration changes to enable a particular product in a cluster are handled
during installation by lsfsetup. If at some later time you want to modify the
products in your cluster, edit the PRODUCTS line in the Parameters section of the
lsf.cluster.cluster file. You can specify one or more of the strings LSF_Base,
LSF_Batch, LSF_JobScheduler, LSF Analyzer, and LSF_MultiCluster to
enable the operation of LSF Base, LSF Batch, LSF JobScheduler, LSF Analyzer, and LSF
MultiCluster, respectively. If any of LSF_Batch, LSF_JobScheduler, or
LSF_MultiCluster are specified, then LSF_Base is automatically enabled as well.

If the lsf.cluster.cluster file is shared, adding a product name to the PRODUCTS
line enables that product for all hosts in the cluster. For example, to enable the
operation of LSF Base, LSF Batch, and LSF MultiCluster:

Begin Parameters
PRODUCTS=LSF_Base LSF_Batch LSF_MultiCluster
End Parameters

To enable the operation of LSF Base only:

Begin Parameters
PRODUCTS=LSF_Base
End Parameters

To enable the operation of LSF JobScheduler:
��

�

Begin Parameters
PRODUCTS=LSF_JobScheduler LSF_Base
End Parameters

6HOHFWHG�+RVWV

It is possible to indicate that only certain hosts run LSF Batch or LSF JobScheduler
within a cluster. This is done by specifying LSF_Batch or LSF_JobScheduler in the
RESOURCES field on the HOSTS section of the lsf.cluster.cluster file. For
example, the following enables hosts hostA, hostB, and hostC to run LSF
JobScheduler and hosts hostD, hostE, and hostF to run LSF Batch.

Begin Parameters
PRODUCTS=LSF_Batch LSF_Base
End Parameters

Begin Host
HOSTNAME model type server RESOURCES
hostA SUN41 SPARCSLC 1 (sparc bsd LSF_JobScheduler)
hostB HPPA9 HP735 1 (linux LSF_JobScheduler)
hostC SGI SGIINDIG 1 (irix cs LSF_JobScheduler)
hostD SUNSOL SunSparc 1 (solaris)
hostE HP_UX A900 1 (hpux cs bigmem)
hostF ALPHA DEC5000 1 (alpha)
End Hosts

The license file used to serve the cluster must have the corresponding features. A host
will show as unlicensed if the license for the component it was configured to run is
unavailable. For example, if a cluster is configured to run LSF_Batch on all hosts, and
the license file does not contain the LSF_JobScheduler feature, then the hosts will be
unlicensed, even if there are licenses for LSF Base.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

�� 0DQDJLQJ�/6)�%DWFK

This chapter describes the operating concepts and maintenance tasks of the batch
queuing system, LSF Batch. This chapter requires you to understand concepts from
‘Managing LSF Base’ on page 45. The topics covered in this chapter are:

• managing LSF Batch logs

• duplicate event logging

• controlling LSF Batch servers

• controlling LSF Batch queues

• managing LSF Batch configuration

• validating job submissions

• controlling LSF Batch jobs

• forcing job execution

• managing an LSF Cluster using xlsadmin

0DQDJLQJ�/6)�%DWFK�/RJV�

Managing error log files for LSF Batch daemons was described in ‘Managing Error Logs’
on page 45. This section discusses the other important log files LSF Batch daemons
produce. The LSF Batch log files are found in the directory LSB_SHAREDIR/
cluster/logdir.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DWFK�
/6)�%DWFK�$FFRXQWLQJ�/RJ

Each time a batch job completes or exits, an entry is appended to the lsb.acct file.
This file can be used to create accounting summaries of LSF Batch system use. The
bacct(1)command produces one form of summary. The lsb.acct file is a text file
suitable for processing with awk, perl, or similar tools. See the lsb.acct(5) manual
page for details of the contents of this file. Additionally, the LSF Batch API supports
calls to process the lsb.acct records. See the LSF Programmer’s Guide for details of
LSF Batch API.

You should move the lsb.acct file to a backup location, and then run your
accounting on the backup copy. The daemon automatically creates a new lsb.acct
file to replace the moved file. This prevents problems that might occur if the daemon
writes new log entries while the accounting programs are running. When the
accounting is complete, you can remove or archive the backup copy.

/6)�%DWFK�(YHQW�/RJ

The LSF Batch daemons keep an event log in the lsb.events file. The mbatchd
daemon uses this information to recover from server failures, host reboots, and LSF
Batch reconfiguration. The lsb.events file is also used by the bhist command to
display detailed information about the execution history of batch jobs, and by the
badmin command to display the operational history of hosts, queues, and LSF Batch
daemons.

For performance reasons, the mbatchd automatically backs up and rewrites the
lsb.events file after every 1000 batch job completions (this is the default; the value
is controlled by the MAX_JOB_NUM parameter in the lsb.params file). The old
lsb.events file is moved to lsb.events.1, and each old lsb.events.n file is
moved to lsb.events.n+1. The mbatchd never deletes these files. If disk storage is
a concern, the LSF administrator should arrange to archive or remove old
lsb.events.n files occasionally.

CAUTION!
Do not remove or modify the lsb.events file. Removing or modifying the
lsb.events file could cause batch jobs to be lost.
��

�

'XSOLFDWH�(YHQW�/RJJLQJ

By default, LSF Batch stores all state information needed to recover from server
failures, host reboots, or reconfiguration in a file in the LSB_SHAREDIR directory.
Typically, the LSB_SHAREDIR directory resides on a reliable file server that also
contains other critical applications necessary for running user’s jobs. This is performed
because, if the central file server is unavailable, user’s applications cannot run, and the
failure of LSF Batch to continue processing user’s jobs is a secondary issue.

For sites not wishing to rely solely on a central file server for recovery information, LSF
can be configured to maintain a replica of the recovery file. The replica is stored on the
file server, and used if the primary copy is unavailable—referred to as duplicate event
logging. When LSF is configured this way, the primary event log is stored on the first
master host, and re-sychronized with the replicated copy when the host recovers.

&RQILJXULQJ�'XSOLFDWH�(YHQW�/RJJLQJ

To enable the replication feature, define LSB_LOCALDIR in the lsf.conf file.
LSB_LOCALDIR should be a local directory and it should exist only on the first master
host (that is, the first host configured in the lsf.cluster.cluster file).

LSB_LOCALDIR is used to store the primary copy of the batch state information. The
contents of LSB_LOCALDIR are copied to a replica in LSB_SHAREDIR which resides
on a central file server. As before, LSB_SHAREDIR is assumed to be accessible from all
hosts which can potentially become the master.

+RZ�'XSOLFDWH�(YHQW�/RJJLQJ�:RUNV

With the replication feature enabled the following scenarios can occur:

)DLOXUH�RI�)LOH�6HUYHU�

If the file server containing LSB_SHAREDIR goes down, LSF will continue to process
jobs. Client commands such as bhist(1) and bacct(1) which directly read
LSB_SHAREDIR will not work. When the file server recovers, the replica in
LSB_SHAREDIR will be updated.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DWFK�
)DLOXUH�RI�)LUVW�0DVWHU�+RVW

If the first master host fails, then the primary copy of the recovery file in the
LSB_LOCALDIR directory becomes unavailable. A new master host will be selected
which will use the recovery file replica in LSB_SHAREDIR to restore its state and to log
future events. Note that there is no replication by the second master.

5HFRYHU\�RI�)LUVW�0DVWHU�+RVW

When the first master host becomes available again, it will update the primary copy in
LSB_LOCALDIR from the replica in LSB_SHAREDIR and continue operations as
before.

The replication feature improves the reliability of LSF Batch operations provided that
the following assumptions hold:

• Failure of the LSF master host only occurs from the first master to the second
master. The replication feature is not active if the second master also fails and a
third master takes over.

• The master host containing LSB_LOCALDIR and the file server containing
LSB_SHAREDIR do not fail simultaneously. In this situation, LSF Batch will be
unavailable.

• Network partitioning causing a cluster to split into two independent clusters each
simultaneously running a mbatchd does not occur. This may happen given
certain network topologies and failure modes. For example, connectivity is lost
between the first master, M1, and both the file server and the secondary master,
M2. Both M1 and M2 will run the mbatchd service with M1 logging events to
LSB_LOCALDIR and M2 logging to LSB_SHAREDIR. When connectivity is
restored, the changes made by M2 to LSB_SHAREDIR will be lost when M1
updates LSB_SHAREDIR from its copy in LSB_LOCALDIR.

&RQWUROOLQJ�/6)�%DWFK�6HUYHUV

The lsadmin command is used to control LSF Base daemons, LIM, and RES. LSF Batch
has the badmin command to perform similar operations on LSF Batch daemons.
��

�

/6)�%DWFK�6\VWHP�6WDWXV

To check the status of LSF Batch server hosts and queues, use the bhosts and
bqueues commands:

% bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hostA ok 2 1 0 0 0 0 0
hostB closed 2 2 2 2 0 0 0
hostD ok - 8 1 1 0 0 0

% bqueues

QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
night 30 Open:Inactive - - - - 4 4 0 0
short 10 Open:Active 50 5 - - 1 0 1 0
simulation 10 Open:Active - 2 - - 0 0 0 0
default 1 Open:Active - - - - 6 4 2 0

If the status of a batch server is ‘closed’, then it will not accept more jobs. The LSF
administrator can force a job to run using the brun(1) command. See ‘Forcing Job
Execution — brun -f’ on page 98 for details.

Use the bhosts -l command to see more information about the status of closed
servers. One of the following conditions will be indicated:

• closed_Lock
The host is locked by the LSF administrator or root. All batch jobs on the host are
suspended by the lsbatch system.

• closed_Adm
The host is closed by the LSF administrator or root. No job can be dispatched to it
but jobs that are executing on it will not be affected.

• closed_Wind
The host is closed by its dispatch windows, which are defined in the configuration
file lsb.hosts.

• closed_Full
The configured maximum number of batch jobs on the host has been reached.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DWFK�
• closed_Busy
The host is busy because some load indices go beyond the configured thresholds.
The overloaded thresholds are identified by an asterisk (*).

• closed_LIM
The LIM on the host is unreachable, but the sbatchd is ok.

An inactive queue will accept new job submissions, but will not dispatch any new jobs.
A queue can become inactive if the LSF cluster administrator explicitly inactivates it
via badmin command, or if the queue has a dispatch or run window defined and the
current time is outside the time window.

mbatchd automatically logs the history of the LSF Batch daemons in the LSF Batch
event log. You can display the administrative history of the batch system using the
badmin command.

The badmin hhist command displays the times when LSF Batch server hosts are
opened and closed by the LSF administrator.

The badmin qhist command displays the times when queues are opened, closed,
activated, and inactivated.

The badmin mbdhist command displays the history of the mbatchd daemon,
including the times when the master starts, exits, reconfigures, or changes to a different
host.

The badmin hist command displays all LSF Batch history information, including all
the events listed above.

5HPRWH�6WDUW�XS�RI�sbatchd

You can use badmin hstartup command to start sbatchd on some or all remote
hosts from one host:

% badmin hstartup all
Start up slave batch daemon on <hostA>done
Start up slave batch daemon on <hostB>done
Start up slave batch daemon on <hostD>done
��

�

Note that you do not have to be root to use the badmin command to start LSF Batch
daemons.

For remote startup to work, file /etc/lsf.sudoers has to be set up properly and
you have to be able to run rsh across all LSF hosts without having to enter a password.
See ‘The lsf.sudoers File’ on page 189 for configuration details of lsf.sudoers.

5HVWDUWLQJ�sbatchd

mbatchd is restarted by the badmin reconfig command. sbatchd can be restarted
using the badmin hrestart command:

% badmin hrestart hostD
Restart slave batch daemon on <hostD> done

You can specify more than one host name to restart sbatchd on multiple hosts, or use
all to refer to all LSF Batch server hosts. Restarting sbatchd on a host does not affect
batch jobs that are running on that host.

6KXWWLQJ�'RZQ�/6)�%DWFK�'DHPRQV

The badmin hshutdown command shuts down the sbatchd.

% badmin hshutdown hostD
Shut down slave batch daemon on <hostD> done

If sbatchd is shutdown, that particular host will not be available for running new
jobs. Existing jobs running on that host will continue to completion, but the results will
not be sent to the user until sbatchd is later restarted.

To shut down mbatchd you must first use the badmin hshutdown command to shut
down the sbatchd on the master host, and then run the badmin reconfig
command. The mbatchd is normally restarted by sbatchd; if there is no sbatchd
running on the master host, badmin reconfig causes mbatchd to exit.

If mbatchd is shut down, all LSF Batch services will be temporarily unavailable.
However, all existing jobs will not be affected. When mbatchd is later restarted,
previous status will be restored from the event log file and job scheduling will
continue.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DWFK�
2SHQLQJ�DQG�&ORVLQJ�RI�%DWFK�6HUYHU�+RVWV

Occasionally, you might want to drain a batch server host for the purposes of
rebooting, maintenance, or host removal. This can be achieved by running the badmin
hclose command:

% badmin hclose hostB
Close <hostB> done

When a host is open, LSF Batch can dispatch jobs to that host. When a host is closed,
no new batch jobs are dispatched, but jobs already dispatched to the host continue to
execute. To reopen a batch server host, run badmin hopen command:

% badmin hopen hostB
Open <hostB> done

To view the history of a batch server host, run badmin hhist command:

% badmin hhist hostB
Wed Nov 20 14:41:58: Host <hostB> closed by administrator <lsf>.
Wed Nov 20 15:23:39: Host <hostB> opened by administrator <lsf>.

&RQWUROOLQJ�/6)�%DWFK�4XHXHV

Each batch queue can be open or closed, active or inactive. Users can submit jobs to
open queues, but not to closed queues. Active queues start jobs on available server
hosts, and inactive queues hold all jobs. The LSF administrator can change the state of
any queue. Queues can also become active or inactive because of queue run or dispatch
windows.

bqueues�²�4XHXH�6WDWXV

The current status of a particular queue or all queues is displayed by the bqueues(1)
command. The bqueues -l option also gives current statistics about the jobs in a
particular queue such as the total number of jobs in this queue, the number of jobs
running, suspended, and so on.
��

�

% bqueues normal
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
normal 30 Open:Active - - - 2 6 4 2 0

2SHQLQJ�DQG�&ORVLQJ�4XHXHV

When a batch queue is open, users can submit jobs to the queue. When a queue is
closed, users cannot submit jobs to the queue. If a user tries to submit a job to a closed
queue, an error message is printed and the job is rejected. If a queue is closed but still
active, previously submitted jobs continue to be processed. This allows the LSF
administrator to drain a queue.

% badmin qclose normal
Queue <normal> is closed
% bqueues normal
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
normal 30 Closed:Active - - - 2 6 4 2 0
% bsub -q normal hostname
normal: Queue has been closed
% badmin qopen normal
Queue <normal> is opened

$FWLYDWLQJ�DQG�,QDFWLYDWLQJ�4XHXHV

When a queue is active, jobs in the queue are started if appropriate hosts are available.
When a queue is inactive, jobs in the queue are not started. Queues can be activated
and inactivated by the LSF administrator using the badmin qact and
badmin qinact commands, or by configured queue run or dispatch windows.

If a queue is open and inactive, users can submit jobs to the queue but no new jobs are
dispatched to hosts. Currently running jobs continue to execute. This allows the LSF
administrator to let running jobs complete before removing queues or making other
major changes.

% badmin qinact normal
Queue <normal> is inactivated
% bqueues normal
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
normal 30 Open:Inctive - - - - 0 0 0 0
% badmin qact normal
Queue <normal> is activated
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DWFK�
0DQDJLQJ�/6)�%DWFK�&RQILJXUDWLRQ

The LSF Batch cluster is a subset of the LSF Base cluster. All servers used by LSF Batch
must belong to the base cluster; however, not all servers in the base cluster must
provide LSF Batch services.

LSF Batch configuration consists of four files: lsb.params, lsb.hosts, lsb.users,
and lsb.queues. These files are stored in LSB_CONFDIR/cluster/configdir,
where cluster is the name of your cluster.

All these files are optional. If any of these files do not exist, LSF Batch will assume a
default configuration.

The lsb.params file defines general parameters about LSF Batch system operation,
such as the name of the default queue when the user does not specify one, scheduling
intervals for mbatchd and sbatchd, and so on. Detailed parameters are described in
‘The lsb.params File’ on page 193.

The lsb.hosts file defines LSF Batch server hosts together with their attributes. Not
all LSF hosts defined by LIM configuration have to be configured to run batch jobs.
Batch server host attributes include scheduling load thresholds, dispatch windows,
and job slot limits. This file is also used to define host groups and host partitions. See
‘The lsb.hosts File’ on page 202 for details of this file.

The lsb.users file contains user-related parameters such as user groups, user job slot
limits, and account mapping. See ‘The lsb.users File’ on page 198 for details.

The lsb.queues file defines job queues. Numerous controls are available at the
queue level to allow cluster administrators to customize site resource allocation
policies. See ‘The lsb.queues File’ on page 208 for more details.

When you first install LSF on your cluster, some example queues are already
configured for you. You should customize these queues or define new queues to meet
your site needs.

Note
After changing any of the LSF Batch configuration files, you need to run badmin
reconfig to tell mbatchd to pick up the new configuration. You must also run this
every time you change LIM configuration.
��

�

$GGLQJ�D�%DWFK�6HUYHU�+RVW

You can add a batch server host to LSF Batch configuration following the steps below:

Step 1 If you are adding a host that has not been added to the LSF Base cluster yet,
perform steps described in ‘Adding a Host to a Cluster’ on page 56.

Step 2 Modify LSB_CONFDIR/cluster/configdir/lsb.hosts file to add the
new host together with its attributes. If you want to limit the added host for
use only by some queues, you should also update lsb.queues file. Since host
types and host models as well as the virtual name ‘default’ can be used to
refer to all hosts of that type, model, or every other LSF host not covered by the
definitions, you might not need to change any of the files if the host is already
covered.

Step 3 Run badmin reconfig to tell mbatchd to pick up the new configuration.

Step 4 Start sbatchd on the added host by running badmin hstartup or simply
start it manually.

5HPRYLQJ�D�%DWFK�6HUYHU�+RVW

To remove a host as a batch server host, follow the steps below:

Step 1 If you need to permanently remove a host from your cluster, you should use
badmin hclose to prevent new batch jobs from starting on the host, and wait
for any running jobs on that host to finish. If you want to shut the host down
before all jobs complete, use bkill to kill the running jobs.

Step 2 Modify lsb.hosts and lsb.queues in LSB_CONFDIR/cluster/
configdir directory and remove the host from any of the sections.

Step 3 Run badmin hshutdown to shutdown sbatchd on that host.

CAUTION!
You should never remove the master host from LSF Batch. Change LIM
configuration to assign a different default master host if you want to remove
your current default master from the LSF Batch server pool.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DWFK�
$GGLQJ�D�%DWFK�4XHXH

Adding a batch queue does not affect pending or running LSF Batch jobs. To add a
batch queue to a cluster:

Step 1 Log in as the LSF administrator on any host in the cluster.

Step 2 Edit the LSB_CONFDIR/cluster/configdir/lsb.queues file to add the
new queue definition. You can copy another queue definition from this file as
a starting point; remember to change the QUEUE_NAME of the copied queue.
Save the changes to lsb.queues. See ‘The lsb.queues File’ on page 208 for a
complete description of LSF Batch queue configuration.

Step 3 Run the command badmin ckconfig to check the new queue definition. If
any errors are reported, fix the problem and check the configuration again. See
‘Overview of LSF Configuration Files’ on page 50 for an example of normal output
from badmin ckconfig.

Step 4 When the configuration files are ready, run badmin reconfig. The master
batch daemon (mbatchd) is unavailable for approximately one minute while
it reconfigures. Pending and running jobs are not affected.

5HPRYLQJ�D�%DWFK�4XHXH

Before removing a queue, you should make sure there are no jobs in that queue. If you
remove a queue that has jobs in it, the jobs are temporarily moved to a lost and
found queue. Jobs in the lost and found queue remain pending until the user or the
LSF administrator uses the bswitch command to switch the jobs into regular queues.
Jobs in other queues are not affected.

In this example, move all pending and running jobs in the night queue to the idle
queue, and then delete the night queue.

Step 1 Log in as the LSF administrator on any host in the cluster.

Step 2 Close the queue to prevent any new jobs from being submitted:

% badmin qclose night
Queue <night> is closed
��

�

Step 3 Move all pending and running jobs into another queue. The bswitch -q
night argument chooses jobs from the night queue, and the job ID number
0 specifies that all jobs should be switched:

% bjobs -u all -q night
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user5 RUN night hostA hostD sleep 500 Nov 21 18:16
5310 user5 PEND night hostA sleep 500 Nov 21 18:17

% bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>

Step 4 Edit the LSB_CONFDIR/cluster/configdir/lsb.queues file. Remove
(or comment out) the definition for the queue being removed. Save the
changes.

Step 5 Run the command badmin reconfig. If any problems are reported, fix them
and run badmin reconfig again. The batch system is unavailable for about
one minute while the system rereads the configuration.

9DOLGDWLQJ�-RE�6XEPLVVLRQV

A user’s job can be rejected at submission time if the submission parameters cannot be
validated. Sites can implement their own policy to determine valid values or
combinations of submission parameters. The validation checking is performed by an
external submission program (esub) located in LSF_SERVERDIR (see ‘External
Submission and Execution Executables’ on page 42).

The esub is invoked at job submission and modification time. It is also invoked when
a checkpointed job is restarted. In each of these cases the user is allowed to specify
parameters that affect the scheduling or execution of the job. To validate these
parameters, the esub is invoked with two environment variables set:

• LSB_SUB_PARM_FILE is the full pathname of a file containing the submission,
modification, or restart parameters specified by the user. The file consists of a set
of name-value pairs of the form "option_name=value" with the option names
listed in the following table. The esub can read this file.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DWFK�
• LSB_SUB_ABORT_VALUE is the exit code used by the esub whenever an operation
is aborted as a result of the parameters encountered by the esub when the
LSB_SUB_PARM_FILE file is read.

The LSB_SUB_PARM_FILE�Option Names are shown below:

LSB_SUB_JOB_NAME
the specified job name

LSB_SUB_QUEUE
value is the specified queue name

LSB_SUB_IN_FILE
the specified standard input file name

LSB_SUB_OUT_FILE
the specified standard output file name

LSB_SUB_ERR_FILE
the specified standard error file name

LSB_SUB_EXCLUSIVE
"Y" specifies exclusive execution

LSB_SUB_NOTIFY_END
ends

LSB_SUB_NOTIFY_BEGIN
"Y" specifies email notification when job begins

LSB_SUB_USER_GROUP
the specified user group name

LSB_SUB_CHKPNT_PERIOD
the specified checkpoint period

LSB_SUB_CHKPNT_DIR
the specified checkpoint directory
��

�

LSB_SUB_RESTART_FORCE
"Y" specifies forced restart job

LSB_SUB_RESTART
"Y" specifies a restart job.

LSB_SUB_RERUNNABLE
"Y" specifies a rerunnable job.

LSB_SUB_WINDOW_SIG
the specified window signal number

LSB_SUB_HOST_SPEC
the specified hostspec

LSB_SUB_DEPEND_COND
the specified dependency condition

LSB_SUB_RES_REQ
the specified resource requirement string

LSB_SUB_PRE_EXEC
the specified pre-execution command

LSB_SUB_LOGIN_SHELL
the specified login shell

LSB_SUB_MAIL_USER
the specified user for sending email

LSB_SUB_MODIFY
"Y" specifies a modification request

LSB_SUB_MODIFY_ONCE
"Y" specifies a modification-once request

LSB_SUB_PROJECT_NAME
the specified project name
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DWFK�
LSB_SUB_INTERACTIVE
"Y" specifies an interactive job

LSB_SUB_PTY
"Y" specifies an interactive job with PTY support

LSB_SUB_PTY_SHELL
"Y" specifies an interactive job with PTY shell support

LSB_SUB_TIME_EVENT
the time event expression

LSB_SUB_HOSTS
the list of execution host names

LSB_SUB_NUM_PROCESSORS
the minimum number of processors requested

LSB_SUB_MAX_NUM_PROCESSORS
the maximum number of processors requested

LSB_SUB_BEGIN_TIME
the begin time, in seconds since 00:00:00 GMT, Jan. 1, 1970

LSB_SUB_TERM_TIME
the termination time, in seconds since 00:00:00 GMT, Jan. 1, 1970

LSB_SUB_OTHER_FILES
always "SUB_RESET" if defined to indicate a bmod is being performed to reset
the number of files to be transferred

LSB_SUB_OTHER_FILES_nn
nn is an index number indicating the particular file transfer

value is the specified file transfer expression; for example, for ’bsub -f "a >
b" -f "c < d"’, the following would be defined:
LSB_SUB_OTHER_FILES_0="a > b"
LSB_SUB_OTHER_FILES_1="c < d"
��

�

LSB_SUB_EXCEPTION
the specified exception condition

LSB_SUB_RLIMIT_CPU
the specified cpu limit

LSB_SUB_RLIMIT_FSIZE
the specified file limit

LSB_SUB_RLIMIT_DATA
the specified data size limit

LSB_SUB_RLIMIT_STACK
the specified stack size limit

LSB_SUB_RLIMIT_CORE
the specified core file size limit

LSB_SUB_RLIMIT_RSS
the specified resident size limit

LSB_SUB_RLIMIT_RUN
the specified wall clock run limit

Any messages that need to be provided to the user should be directed to the standard
error stream and not the standard output stream.

One use of this feature is to support project-based accounting. The user can request
that the resources used by a job be charged to a particular project. Projects are defined
outside of the LSF configuration files, so LSF will accept any arbitrary string for a
project name. In order to ensure that only valid projects are entered and the user is
eligible to charge to that project, an esub can be written.

The following is an example of an external submission program written in UNIX bare
shell to do this.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DWFK�
#!/bin/sh
. $LSB_SUB_PARM_FILE

Redirect stderr to stdout so echo can be used for error messages
exec 1>&2

Check valid projects
if [$LSB_PROJECT -ne "proj1" -o $LSB_PROJECT -ne "proj2"] then

echo "Invalid project name specified"
exit $LSB_SUB_ABORT_VALUE

fi

USER=‘whoami‘
if [$LSB_PROJECT -eq "proj1"]; then

Only user1 and user2 can charge to proj1
if [$USER -ne "user1" -a $USER -ne "user2"]; then

echo "You are not allowed to charge to this project"
exit $LSB_SUB_ABORT_VALUE

fi
fi

&RQWUROOLQJ�/6)�%DWFK�-REV

The LSF administrator can control batch jobs belonging to any user. Other users can
control only their own jobs. Jobs can be suspended, resumed, killed, and moved within
and between queues.

0RYLQJ�-REV�²�bswitch��btop��DQG�bbot

The bswitch command moves pending and running jobs from queue to queue. The
btop and bbot commands change the dispatching order of pending jobs within a
queue. The LSF administrator can move any job. Other users can move only their own
jobs.

The btop and bbot commands do not allow users to move their own jobs ahead of
those submitted by other users. Only the execution order of the user’s own jobs is
changed. The LSF administrator can move one user’s job ahead of another user’s. The
��

�

btop, bbot, and bswitch commands are described in the LSF Batch User’s Guide and
in the btop(1)and bswitch(1)manual pages.

6LJQDOOLQJ�-REV�²�bstop��bresume��DQG�bkill

The bstop, bresume, and bkill commands send signals to batch jobs. See the
kill(1) manual page for a discussion of the signals on UNIX.

bstop sends SIGSTOP to sequential jobs and SIGTSTP to parallel jobs.

bresume sends a SIGCONT.

bkill sends the specified signal to the process group of the specified jobs. If the -s
option is not present, the default operation of bkill is to send a SIGKILL signal to the
specified jobs to kill these jobs. Twenty seconds before SIGKILL is sent, SIGTERM and
SIGINT are sent to give the job a chance to catch the signals and clean up.

On Windows NT, job control messages replace the SIGINT and SIGTERM signals, but
only customized applications will be able to process them. Termination is
implemented by the TerminateProcess() system call.

Users are only allowed to send signals to their own jobs. The LSF administrator can
send signals to any job. See the LSF Batch User’s Guide and the manual pages for more
information about these commands.

This example shows the use of the bstop and bkill commands:

% bstop 5310
Job <5310> is being stopped

% bjobs 5310
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5310 user5 PSUSP night hostA sleep 500 Nov 21 18:17

% bkill 5310
Job <5310> is being terminated
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DWFK�
% bjobs 5310
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5310 user5 EXIT night hostA sleep 500 Nov 21 18:17

)RUFLQJ�-RE�([HFXWLRQ�²�brun -f

A pending batch job can be forced to run by using the brun command. This operation
can only be performed by an LSF administrator. To force a job to run, you must specify
the host on which that job will run. For parallel jobs, a list of hosts can be specified. The
number of host names in the list must be at least equal to the minimum number of
processors requested by the job. For example, the following command will force the
sequential job 104 to run on hostA:

% brun -m hostA 104

The following command will force the parallel job 105 to run on hostA, hostB, hostC,
and hostD.

% brun -m "hostA hostB hostC hostD" 105

If the job had requested more than 4 processors at a minimum, the request would have
been rejected. If the number of hosts specified for a parallel job is greater than the
maximum number of processors the job requested, the extra hosts are ignored.

When a job is forced to run, any other constraints associated with the job (such as
resource requirements or dependency conditions) are ignored. Moreover, any
scheduling policy (such as fairshare or job limit) specified in the batch configuration is
also ignored. In this situation you might see some job slot limits, such as the maximum
number of jobs that can run on a host, being violated. See ‘Job Slot Limits’ on page 26 for
details on job slot limits. However, after a job is forced to run, it can still be suspended
due to the underlying queue’s run window and threshold conditions and the job’s
execution hosts’ threshold conditions. To override these so that a job can be run until
completion, ignoring these load conditions, use the -f option. An example of a job
forced to run until completion is shown below:

% brun -f -m hostA 124
��

�

0DQDJLQJ�DQ�/6)�&OXVWHU�8VLQJ�xlsadmin

Cluster Administrator (xlsadmin) is a graphical tool designed to assist you in the
management of your LSF cluster. This tool allows you to perform the management
tasks described in Chapter 2, ‘Managing LSF Base’, on page 45 and preceding portion of
Chapter 3, ‘Managing LSF Batch’, on page 79.

xlsadmin consists of the following operating modes: management and configuration.

Management mode provides the tools to:

• View base host, batch host and queue status. These tasks would otherwise be done
using the lshosts, lsload, bhosts, and bqueues commands.

• Perform control tasks (i.e., start, stop, open, close, ...) on base hosts (LIM and RES),
batch hosts and queues (sbatchd). These tasks would otherwise be done using the
lsadmin and badmin commands.

Configuration mode provides the tools to:

• Add, delete, and modify the configuration of base hosts, batch host, batch queues,
global objects, shared objects, and resources. These tasks would otherwise be done
by manually editing LSF configuration files.

• Verify configuration changes and reconfigure the LSF Batch system. These tasks
would otherwise be done using the lsadmin reconfig and badmin reconfig
commands.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ��

0DQDJLQJ�/6)�%DWFK�
xlsadmin�0DQDJHPHQW�0RGH

Figure 2 shows the xlsadmin Manage Base tab which displays all cluster hosts defined
by LIM configuration. Figure 3 shows the xlsadmin Manage Batch tab which displays
all the configured batch hosts and queues.

System messages and LSF command responses are displayed:

In the message area at the bottom of the xlsadmin window.

In the message dialog activated by choosing View | Show Message Box...

)LJXUH�����xlsadmin�0DQDJH�%DVH�7DE

UNIX

NT
���

�

)LJXUH�����xlsadmin�0DQDJH�%DWFK�7DE

On the Manage Base and Manage Batch tabs, double-click any item to display status
dialogs.

Right-click any item to perform the following control tasks:

• Base host: start, restart, lock, unlock and shutdown LIM, and start, restart, and
shutdown RES.

• Batch host: start, restart, and shutdown sbatchd, and open and close host.

• Queue: activate, deactivate, open, and close.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

0DQDJLQJ�/6)�%DWFK�
xlsadmin�&RQILJXUDWLRQ�0RGH

Figure 4 shows the xlsadmin Configure Base tab. This tab displays the base hosts
defined by LIM configuration and provides tools to add, modify, and delete base hosts
and global objects (host types, host models, and resources).

)LJXUH�����xlsadmin�&RQILJXUH�%DVH�7DE
���

�

Figure 5 shows the xlsadmin Configure Batch tab. This tab displays the configured
batch hosts and queues and provides the tools to add, modify, and delete batch hosts,
queues, host groups, user groups, host partitions, and batch parameters.

)LJXUH�����xlsadmin�&RQILJXUH�%DWFK�7DE
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

0DQDJLQJ�/6)�%DWFK�
To add, modify and delete base hosts, batch hosts and queues use the right-click menu
and choose the appropriate command. Figure 6 shows the Cluster Host dialog used to
edit and add base hosts, and Figure 7 shows the Batch Queue dialog used to edit and
add queues.

)LJXUH�����&OXVWHU�+RVW�'LDORJ

To add, modify and delete host types, host models, resources (configured in
lsf.shared), host groups, host partitions (configured in lsb.hosts), user groups
(configured in lsb.users), and batch parameters (configured in lsb.params)
choose the appropriate tool button. For example, Figure 7 shows the Resources dialog
used to edit, add, and delete resources.
���

�

)LJXUH�����%DWFK�4XHXH�'LDORJ

After making modifications to the cluster configuration, complete the following steps:

Step 1 Choose File | Check. View the messages displayed in the message area and
correct any errors.

Step 2 Save all modifications by choosing File | Save to Files...

Step 3 Reconfigure the LSF cluster using the modified configuration by choosing
File | Commit.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

0DQDJLQJ�/6)�%DWFK�
���

�� 7XQLQJ�/6)�%DWFK

This chapter describes the operating concepts and maintenance tasks of the batch
queuing system, LSF Batch. This chapter requires you to understand concepts from
‘Managing LSF Base’ on page 45. The topics covered in this chapter are:

• tuning LSF Batch

• controlling interference via load conditions

• understanding suspended jobs

• controlling fairshare

• hierarchical fairshare

• understanding how fairshare works

• limits and windows

• controlling job execution

• using licensed software with LSF Batch

• sample LSF Batch configuration files

7XQLQJ�/6)�%DWFK

Each batch job has its resource requirements. Batch server hosts that match the
resource requirements are the candidate hosts. When the batch daemon wants to
schedule a job, it first asks the LIM for the load index values of all the candidate hosts.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
The load values for each host are compared to the scheduling conditions. Jobs are only
dispatched to a host if all load values are within the scheduling thresholds.

When a job is running on a host, the batch daemon periodically gets the load
information for that host from the LIM. If the load values cause the suspending
conditions to become true for that particular job, the batch daemon performs the
SUSPEND action to the process group of that job. The batch daemon allows some time
for changes to the system load to register before it considers suspending another job.

When a job is suspended, the batch daemon periodically checks the load on that host.
If the load values cause the scheduling conditions to become true, the daemon
performs the RESUME action to the process group of the suspended batch job.

The SUSPEND and RESUME actions are configurable as described in ‘Configurable Job
Control Actions’ on page 228.

LSF Batch has a wide variety of configuration options. This section describes only a few
of the options to demonstrate the process. For complete details, see ‘LSF Batch
Configuration Reference’ on page 193. The algorithms used to schedule jobs and concepts
involved are described in ‘How LSF Batch Schedules Jobs’ on page 19.

&RQWUROOLQJ�,QWHUIHUHQFH�YLD�/RDG�&RQGLWLRQV

LSF is often used on systems that support both interactive and batch users. On one
hand, users are often concerned that load sharing will overload their workstations and
slow down their interactive tasks. On the other hand, some users want to dedicate
some machines for critical batch jobs so that they have guaranteed resources. Even if
all your workload is batch jobs, you still want to reduce resource contentions and
operating system overhead to maximize the use of your resources.

Numerous parameters in LIM and LSF Batch configurations can be used to control
your resource allocation and to avoid undesirable contention.

Since interferences are often reflected from the load indices, LSF Batch responds to
load changes to avoid or reduce contentions. LSF Batch can take actions on jobs to
reduce interference before or after jobs are started. These actions are triggered by
different load conditions. Most of the conditions can be configured at both the queue
level and at the host level. Conditions defined at the queue level apply to all hosts used
by the queue, while conditions defined at the host level apply to all queues using the
host.
���

�

• Scheduling conditions. These conditions, if met, trigger the start of more jobs. The
scheduling conditions are defined in terms of load thresholds or resource
requirements.

At the queue level, scheduling conditions are configured as either resource
requirements or scheduling load thresholds, as described in ‘The lsb.queues File’ on
page 208. At the host level, the scheduling conditions are defined as scheduling
load thresholds, as described in ‘The lsb.hosts File’ on page 202.

• Suspending conditions. These conditions affect running jobs. When these
conditions are met, a SUSPEND action is performed to a running job.

At the queue level, suspending conditions are defined as STOP_COND as described
in ‘The lsb.queues File’ on page 208, or as suspending load threshold as described in
‘Load Thresholds’ on page 216. At the host level, suspending conditions are defined
as stop load threshold as described in ‘The lsb.hosts File’ on page 202.

• Resuming conditions. These conditions determine when a suspended job can be
resumed. When these conditions are met, a RESUME action is performed on a
suspended job.

At the queue level, resume conditions are defined as either RESUME_COND, or the
scheduling load conditions if RESUME_COND is not defined.

To effectively reduce interference between jobs, correct load indices should be used
properly. Below are examples of a few frequently used parameters.

3DJLQJ�5DWH��pg�

The paging rate (pg) load index relates strongly to the perceived interactive
performance. If a host is paging applications to disk, the user interface feels very slow.

The paging rate is also a reflection of a shortage of physical memory. When an
application is being paged in and out frequently, the system is spending a lot of time
performing overhead, resulting in reduced performance.

The paging rate load index can be used as a threshold to either stop sending more jobs
to the host, or to suspend an already running batch job so that interactive users will not
be interfered.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
This parameter can be used in different configuration files to achieve different
purposes. By defining paging rate threshold in lsf.cluster.cluster, the host will
become busy from LIM’s point of view; therefore, no more jobs will be advised by LIM
to run on this host.

By including paging rate in LSF Batch queue or host scheduling conditions, batch jobs
can be prevented from starting on machines with a heavy paging rate, or can be
suspended or even killed if they are interfering with the interactive user on the console.

A batch job suspended due to pg threshold will not be resumed even if the resume
conditions are met unless the machine is interactively idle for more than PG_SUSP_IT
seconds, as described in ‘Parameters’ on page 193.

,QWHUDFWLYH�,GOH�7LPH��it�

Strict control can be achieved using the idle time (it) index. This index measures the
number of minutes since any interactive terminal activity. Interactive terminals
include hard wired ttys, rlogin and lslogin sessions, and X shell windows such as
xterm. On some hosts, LIM also detects mouse and keyboard activity.

This index is typically used to prevent batch jobs from interfering with interactive
activities. By defining the suspending condition in LSF Batch queue as ‘it==0 && pg
>50’, a batch job from this queue will be suspended if the machine is not interactively
idle and paging rate is higher than 50 pages per second. Furthermore, by defining
resuming condition as ‘it>5 && pg <10’ in the queue, a suspended job from the
queue will not resume unless it has been idle for at least five minutes and the paging
rate is less than ten pages per second.

The it index is only non-zero if no interactive users are active. Setting the it threshold
to five minutes allows a reasonable amount of think time for interactive users, while
making the machine available for load sharing, if the users are logged in but absent.

For lower priority batch queues, it is appropriate to set an it scheduling threshold of
ten minutes and suspending threshold of two minutes in the lsb.queues file. Jobs in
these queues are suspended while the execution host is in use, and resume after the
host has been idle for a longer period. For hosts where all batch jobs, no matter how
important, should be suspended, set a per-host suspending threshold in the
lsb.hosts file.
���

�

&38�5XQ�4XHXH�/HQJWK��r15s��r1m��r15m�

Running more than one CPU-bound process on a machine (or more than one process
per CPU for multiprocessors) can reduce the total throughput because of operating
system overhead, as well as interfering with interactive users. Some tasks such as
compiling can create more than one CPU intensive task.

Batch queues should normally set CPU run queue scheduling thresholds below 1.0, so
that hosts already running compute-bound jobs are left alone. LSF Batch scales the run
queue thresholds for multiprocessor hosts by using the effective run queue lengths, so
multiprocessors automatically run one job per processor in this case. For concept of
effective run queue lengths, see lsfintro(1).

For short to medium-length jobs, the r1m index should be used. For longer jobs, you
might want to add an r15m threshold. An exception to this are high priority queues,
where turnaround time is more important than total throughput. For high priority
queues, an r1m scheduling threshold of 2.0 is appropriate.

&38�8WLOL]DWLRQ��ut�

The ut parameter measures the amount of CPU time being used. When all the CPU
time on a host is in use, there is little to gain from sending another job to that host
unless the host is much more powerful than others on the network. The lsload
command reports ut in percent, but the configuration parameter in the
lsf.cluster.cluster file and the LSF Batch configuration files is set as a fraction
in the range from 0 to 1. A ut threshold of 0.9 prevents jobs from going to a host where
the CPU does not have spare processing cycles.

If a host has very high pg but low ut, then it may be desirable to suspend some jobs to
reduce the contention.

The commands bhist and bjobs are useful for tuning batch queues. bhist shows
the execution history of batch jobs, including the time spent waiting in queues or
suspended because of system load. bjobs -p shows why a job is pending.

8QGHUVWDQGLQJ�6XVSHQGHG�-REV

A batch job is suspended when the load level of the execution host causes the
suspending condition to become true. The bjobs -lp command shows the reason
why the job was suspended together with the scheduling parameters. Use bhosts -l
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
to check the load levels on the host, and adjust the suspending conditions of the host
or queue if necessary.

The bhosts -l gives the most recent load values used for the scheduling of jobs.

% bhosts -l hostB
HOST: hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOWS
ok 20.00 2 2 0 0 0 0 0 -

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls t tmp swp mem

Total 0.3 0.8 0.9 61% 3.8 72 26 0 6M 253M 297M
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M

LOAD THRESHOLD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

A ‘-’ in the output indicates that the particular threshold is not defined. If no
suspending threshold is configured for a load index, LSF Batch does not check the
value of that load index when deciding whether to suspend jobs. Normally, the swp
and tmp indices are not considered for suspending jobs, because suspending a job does
not free up the space being used. However, if swp and tmp are specified by the
STOP_COND parameter in your queue, these indices are considered for suspending
jobs.

The load indices most commonly used for suspending conditions are the CPU run
queue lengths, paging rate, and idle time. To give priority to interactive users, set the
suspending threshold on it load index to a non-zero value. Batch jobs are stopped
(within about 1.5 minutes) when any user is active, and resumed when the host has
been idle for the time given in the it scheduling condition.

To tune the suspending threshold for paging rate, it is desirable to know the behaviour
of your application. On an otherwise idle machine, check the paging rate using
lsload, and then start your application. Watch the paging rate as the application runs.
By subtracting the active paging rate from the idle paging rate, you get a number for
the paging rate of your application. The suspending threshold should allow at least 1.5
times that amount. A job can be scheduled at any paging rate up to the scheduling
���

�

threshold, so the suspending threshold should be at least the scheduling threshold
plus 1.5 times the application paging rate. This prevents the system from scheduling a
job and then immediately suspending it because of its own paging.

The effective CPU run queue length condition should be configured like the paging
rate. For CPU-intensive sequential jobs, the effective run queue length indices increase
by approximately one for each job. For jobs that use more than one process, you should
make some test runs to determine your job’s effect on the run queue length indices.
Again, the suspending threshold should be equal to at least the scheduling threshold
plus 1.5 times the load for one job.

Suspending thresholds can also be used to enforce inter-queue priorities. For example,
if you configure a low-priority queue with an r1m (1 minute CPU run queue length)
scheduling threshold of 0.25 and an r1m suspending threshold of 1.75, this queue starts
one job when the machine is idle. If the job is CPU intensive, it increases the run queue
length from 0.25 to roughly 1.25. A high-priority queue configured with a scheduling
threshold of 1.5 and an unlimited suspending threshold will send a second job to the
same host, increasing the run queue to 2.25. This exceeds the suspending threshold for
the low priority job, so it is stopped. The run queue length stays above 0.25 until the
high priority job exits. After the high priority job exits the run queue index drops back
to the idle level, so the low priority job is resumed.

&RQWUROOLQJ�)DLUVKDUH

By default, LSF Batch schedules user jobs according to the First-Come-First-Serve
(FCFS) principle. If your sites have many users contending for limited resources, the
FCFS policy is not enough. For example, a user could submit 1000 long jobs in one
morning and occupy all the resources for a whole week, while other users’s urgent jobs
wait in queues.

LSF Batch provides fairshare scheduling to give you control on how resources should
be shared by competing users. Fairshare can be configured so that LSF Batch can
schedule jobs according to each user or user group’s configured shares. When fairshare
is configured, each user or user group is assigned a priority based on the following
factors:

• configured share for the user or user group

• current number of job slots in use by the user
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
• cumulative CPU time used by the user over the past configurable number of hours
(controlled by the HIST_HOURS parameter in the lsb.params file)

• cumulative run time.

If a user or group has used less than their share of the processing resources, their
pending jobs (if any) are scheduled first, jumping ahead of other jobs in the batch
queues. The CPU times used for fairshare scheduling are not normalised for the host
CPU speed factors.

The special user names others and default can also be assigned shares. The name
others refers to all users not explicitly listed in the USER_SHARES parameter. The
name default refers to each user not explicitly named in the USER_SHARES
parameter. Note that default represents a single user name while others represents
a user group name.

Fairshare affects job scheduling only if there are resource contentions among users
such that users with more shares will run more jobs than users with less shares. If there
is only one user having jobs to run, then fairshare has no effect on job scheduling.

Fairshare in LSF Batch can be configured at either queue level or host level. At queue
level, the shares apply to all users who submit jobs to the queue and all hosts that are
configured as hosts for the queue. It is possible that several queues share some hosts as
servers, but each queue can have its own fairshare policy.

Queue level fairshare is defined using the keyword FAIRSHARE.

If you want strict resource allocation control on some hosts for all workload, configure
fairshare at the host level. Host level fairshare is configured as a host partition. Host
partition is a configuration option that allows a group of server hosts to be shared by
users according to configured shares. In a host partition each user or group of users is
assigned a share. The bhpart command displays the current cumulative CPU usage
and scheduling priority for each user or group in a host partition.

Below are some examples of configuring fairshare at both queue level and host level.
Details of the configuration syntax are described in ‘Host Partitions’ on page 206 and
‘Scheduling Policy’ on page 221.
���

�

Note
Do not define fairshare at both the host and the queue level if the queue uses some or
all hosts belonging to the host partition, because this results in policy conflicts. Doing
so will result in undefined scheduling behaviour.

)DYRXULQJ�&ULWLFDO�8VHUV

If you have a queue that is shared by critical users and non-critical users, you can
configure fairshare so that as long as there are jobs from key users waiting for resource,
non-critical users’ jobs will not be dispatched.

First you can define a user group key_users in lsb.users file. You can then define
your queue such that FAIRSHARE is defined:

Begin Queue
QUEUE_NAME = production
FAIRSHARE = USER_SHARES[[key_users@, 2000] [others, 1]]
...
End Queue

By this configuration, key_users each have 2000 shares, while other users together
have only 1 share. This makes it virtually impossible for other users’ jobs to get
dispatched unless no user in the key_users group has jobs waiting to run.

Note that a user group followed by an ‘@’ refers to each user in that group, as you could
otherwise configure by listing every user separately, each having 2000 shares. This also
defines equal shares among the key_users. If ‘@’ is not present, then all users in the
user group share the same share and there will be no fairshare among them.

You can also use host partition to achieve similar results if you want the same fairshare
policy to apply to jobs from all queues.

6KDULQJ�+RVWV�%HWZHHQ�7ZR�*URXSV

Suppose two departments contributed to the purchase of a large system. The
engineering department contributed 70 percent of the cost, and the accounting
department 30 percent. Each department wants to get (roughly) their money’s worth
from the system.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
You would configure two user groups in the lsb.users file, one listing all the users
in the engineering group, and one listing all the members in the accounting group:

Begin UserGroup
Group_Name Group_Member
eng_users (user6 user4)
acct_users (user2 user5)
End UserGroup

You would then configure a host partition for the host, listing the appropriate shares:

Begin HostPartition
HPART_NAME = big_servers
HOSTS = hostH
USER_SHARES = [eng_users, 7] [acct_users, 3]
End HostPartition

Note the difference in defining USER_SHARES in a queue and in a host partition.
Alternatively, the shares can be configured for each member of a user group by
appending an ‘@’ to the group name:

USER_SHARES = [eng_users@, 7] [acct_users@, 3]

If a user is configured to belong to two user groups, the user can specify which group
the job belongs to with the -P option to the bsub command.

Similarly, you can define the same policy at the queue level if you want to enforce this
policy only within a queue.

5RXQG�5RELQ�6FKHGXOLQJ

Round-robin scheduling balances the resource usage between users by running one job
from each user in turn, independent of what order the jobs arrived in. This can be
configured by defining an equal share for everybody. For example:

Begin HostPartition
HPART_NAME = even_share
HOSTS = all
USER_SHARES = [default, 1]
End HostPartition
���

�

+LHUDUFKLFDO�)DLUVKDUH

For both queues and host partitions, the specification of how resources are allocated to
users can be performed in a hierarchical manner. Groups of users can collectively be
allocated a share, and that share can be further divided and given to subgroups,
resulting in a share tree. For a discussion of the terminology associated with
hierarchical fairsharing, see ‘Hierarchical Fairshare’ on page 60 of the LSF Batch User’s
Guide.

&RQILJXULQJ�+LHUDUFKLFDO�)DLUVKDUH

There are two steps in configuring hierarchical fairshare:

• Define a share tree by defining a hierarchical user group in file lsb.users

• Reference the share tree in the USER_SHARES definition of the queue or host
partition.

The following example shows how you can configure a share tree in the lsb.users
file. User groups must be defined in the share tree before they can be used (in the
GROUP_MEMBER column) to define other groups. The USER_SHARES column describes
how the shares are distributed in a hierachical manner.

Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES
GroupA (User1 User2) ([User1, 5] [User2, 2])
GroupB (UserA UserB) ()
GroupC (UserC UserD UserE UserF) ([default, 1])
DeptX (GroupA User3 User4 User5) ([GroupA, 80] [User3, 5] [others, 10])
DeptY (GroupB GroupC) ([GroupB, 50] [GroupC, 15])
Company (DeptX DeptY) ([DeptX, 50] [DeptY, 30])
End UserGroup
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
The share distribution tree described by the preceding configuration is shown below.

)LJXUH�����([DPSOH�6KDUH�7UHH

There are a few special cases in the above tree that should be noted. The keyword
"others" is used to refer to a special group representing all other users in GroupA that
are not explicitly listed in the share allocation. For example, DeptX subdivides its
shares among GroupA, User3 and "others".

In the above example, there is no definition of how users in group "others" should
divide the shares. Also note that there is no specification of how users in groupB
should subdivide the shares. If share distribution is not defined for a group, all
members of the group collectively own the shares. In this case group members
compete for resources allocated to the group on a First-Come-First-Serve (FCFS) basis.

To implement equal share at the group level, you should define USER_SHARES for the
group as "[default, 1]", as is the case with GroupC in the above example.

The hierarchical shares defined in lsb.users file have no effect unless the group
names are referenced in a share provider’s USER_SHARES definition.

To associate the share tree defined by the above in a share provider (queue or host
partition) simply use the group in the USER_SHARES definition.
���

�

The following example shows how a host partition might use the share tree
“company” in its definition:

Begin HostPartition
HPART_NAME = hpartest
HOSTS = all
USER_SHARES = ([company, 1])
End HostPartition

The USER_SHARES parameter in the host partition definition references the top-level
group of the share tree. Each share provider will maintain a copy of the share tree and
adjust the priority of users based on the resource consumption of jobs using the
provider. This might result in, for example, a user having a low priority in one
fairshare queue and a high priority in another queue, even though the static shares
they have been allocated are the same.

If hierarchical fairshare is not required, the USER_SHARES parameter in the
UserGroup section of the lsb.users file can be omitted and the USER_SHARE
parameter in the queue or host partition can directly list the shares. In this case, the
share tree is essentially flat, and the share assigned to any group cannot be further
divided.

8QGHUVWDQGLQJ�+RZ�)DLUVKDUH�:RUNV

LSF Batch uses an account to maintain information about shares and resource
consumption of every user or user group. Each account keeps the following
information:

• The static share assigned to the user or user group (u_share)

• Current number of job slots (both reserved and started) in use by the user or user
group (run_j)

• The cumulative CPU time used by the user or user group in the past HIST_HOURS
hours (cpu_t)

• The cumulative run time of current jobs submitted by the user or user group
(run_t).
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
LSF Batch uses a decay factor in calculating the cumulative CPU time cpu_t. This
decay factor scales the CPU time used by jobs so that recently used CPU time is
weighted more heavily than CPU time used in the distant past. The decay factor is set
such that one hour of CPU time used recently is decayed to 0.1 hours after
HIST_HOURS hours. See ‘The lsb.params File’ on page 193 for the definition of
HIST_HOURS.

A dynamic priority is calculated for each account according to the following formula:

priority = u_share
/(0.01 + cpu_t*CPU_TIME_FACTOR + run_t*RUN_TIME_FACTOR + run_j*RUN_JOB_FACTOR)

where CPU_TIME_FACTOR, RUN_TIME_FACTOR, and RUN_JOB_FACTOR are system-
wide configuration parameters defined in lsb.params file. See ‘The lsb.params File’ on
page 193 for a description and default values for these parameters. These parameters
allow for customization of the fairshare formula to ignore or give greater weight to
certain terms. For example, if you want to implement static fairshare so that priority is
determined by shares only, then you can set all factors as 0.

Dynamic priorities are recalculated whenever a variable in the above formula is
changed.

-RE�'LVSDWFKLQJ�$FFRUGLQJ�WR�)DLUVKDUH

LSF Batch dispatches jobs according to their dynamic priorities. If fairshare is defined
at the queue level, the priorities are local to each queue. Among queues, the queue
priorities decide which queue should be scanned first. If fairshare is defined at host
level through a host partition, then the priorities of users are global across all queues
that use hosts in the host partitions to run jobs. In this case, queue priority has no effect
because the order is determined by users’ current priorities with regard to the host
partition.

Whenever a host becomes available to run a job, LSF Batch tries to dispatch a job of the
user with the highest dynamic priority. As soon as a job is dispatched, the user’s run_j
gets updated and thus the priority gets lowered according to the above formula. In the
case of hierarchical fairshare, LSF Batch scans the share tree from the top level down to
find out which user’s job to run next. For example, with the share tree shown by Figure
8, LSF Batch first decides which department has the highest dynamic priority, then
further decides which group has the highest priority. After selecting the highest
priority group, a user with the highest priority within the group will be selected. If this
���

�

user has a job to run, the job will be dispatched, else the user with the next highest
priority will be considered, and so on.

Suppose User1 is chosen and the job has been started; the priorities of User1, GroupA,
and DeptX are immediately updated to reflect the change of variable run_j at all
levels.

In some special cases, a user could belong to two or more groups simultaneously. This
is the case when a user works for several groups at the same time. Thus it is possible to
define a share tree with one user appearing multiple times in the same share tree. In
this case, the user’s priority is determined by the highest priority node the user belongs
to. To override this behaviour, a user can use the "-G" option of the bsub to advise LSF
Batch which user group this user should belong to when dispatching this job.

/LPLWV�DQG�:LQGRZV

Although LSF Batch makes it easier for users to access all resources of your client, real
life constraints require that certain resources be controlled such that users are not
stepping on one another. LSF Batch provides ways for you as an administrator to
enforce controls in different ways.

'LVSDWFK�DQG�5XQ�:LQGRZV

The concept of dispatch and run windows for LSF Batch are described in ‘How LSF
Batch Schedules Jobs’ on page 19.

This can be achieved by configuring dispatch windows for the host in the lsb.hosts
files, and run windows and dispatch windows for queues in lsb.queues file.

Dispatch windows in lsb.hosts file cause batch server hosts to be closed unless the
current time is inside the time windows. When a host is closed by a time window, no
new jobs will be sent to it, but the existing jobs running on it will remain running.
Details about this parameter are described in ‘Host Section’ on page 202.

Dispatch and run windows defined in lsb.queues limit when a queue can dispatch
new jobs and when jobs from a queue are allowed to run. A run window differs from
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
a dispatch window in that when a run window is closed, jobs that are already running
will be suspended instead of remain running. Details of these two parameters are
described in ‘The lsb.queues File’ on page 208.

&RQWUROOLQJ�-RE�6ORW�/LPLWV

By defining different job slot limits to hosts, queues, and users, you can control batch
job processing capacity for your cluster, hosts, and users. For example, by limiting
maximum job slot for each of your hosts, you can make sure that your system operates
at optimal performance. By defining a job slot limit for some users, you can prevent
some users from using up all the job slots in the system at one time. There are a variety
of job slot limits that can be used for very different purposes. See ‘Job Slot Limits’ on
page 26 for more concepts and descriptions of job slot limits. Configuration parameters
for job slot limits are described in ‘LSF Batch Configuration Reference’ on page 193.

5HVRXUFH�/LPLWV

Resource limits control how much resource can be consumed by jobs. By defining such
limits, the cluster administrator can have better control of resource usage. For example,
by defining a high priority short queue, you can allow short jobs to be scheduled earlier
than long jobs. To prevent some users from submitting long jobs to this short queue,
you can set CPU limit for the queue so that no jobs submitted from the queue can run
for longer than that limit.

Details of resource limit configuration are described in ‘Resource Limits’ on page 217.

5HVHUYDWLRQ�%DVHG�6FKHGXOLQJ

Most of the Batch policies discussed above support competition based scheduling; that
is, users competing for resources on a dynamic basis. It is sometimes desirable to have
reservation based scheduling so that people can predict the timing of their jobs.

5HVRXUFH�5HVHUYDWLRQ

The concept of resource reservation is discussed in ‘Resource Reservation’ on page 39.
���

�

The resource reservation feature at the queue level allows the cluster administrator to
specify the amount of resources the system should reserve for jobs in the queue. It also
serves as the upper limits of resource reservation if a user also specifies it when
submitting a job.

The resource reservation requirement can be configured at the queue level as part of
the queue level resource requirements. For example:

Begin Queue
.
RES_REQ = select[type==any] rusage[swap=100:mem=40:duration=60]
.
End Queue

will allow a job to be scheduled on any host that the queue is configured to use and will
reserve 100 megabytes of swap and 40 megabytes of memory for a duration of 60
minutes. See ‘Queue-Level Resource Requirement’ on page 213 for detailed configuration
syntax for this parameter.

3URFHVVRU�5HVHUYDWLRQ�DQG�%DFNILOOLQJ

The concepts of processor reservation and backfilling were described in ‘Processor
Reservation’ on page 39. You might want to configure processor reservation if your
cluster has a lot of sequential jobs that compete for resources with parallel jobs.

Parallel jobs requiring a large number of processors can often not be started if there are
many lower priority sequential jobs in the system. There might not be enough
resources at any one instant to satisfy a large parallel job, but there might be enough to
allow a sequential job to be started. With the processor reservation feature the problem
of starvation of parallel jobs can be reduced.

A host can have multiple ‘slots’ available for the execution of jobs. The number of slots
can be independent of the number of processors and each queue can have its own
notion of the number of execution slots available on each host. The number of
execution slots on each host is controlled by the PJOB_LIMIT and HJOB_LIMIT
parameters defined in lsb.queues file. For details of these parameters defined in
lsb.queues file, see ‘The lsb.queues File’ on page 208. When attempting to schedule
parallel jobs requiring N processors (as specified via bsub -n), the system will attempt
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
to find N execution slots across all eligible hosts. It ensures that each job never receives
more slots than there are physical processors on any individual host.

When a parallel job cannot be dispatched because there are not enough execution slots
to satisfy its minimum processor requirements, the currently available slots will be
reserved for the job. These reserved job slots are accumulated until there are enough
available to start the job. When a slot is reserved for a job it is unavailable to any other
job.

While processors are being reserved by a parallel job, they cannot be used by other
jobs. However, there are situations where the system can determine that the job
reserving the processors cannot start before a certain time. In this case it makes sense
to run another job that is short enough to fit into the time slot during which the
processors are reserved but not used. This notion is termed backfilling. Short jobs are
said to backfill processors reserved for large jobs. Backfilling requires that users specify
how long each job will run so that LSF Batch can estimate when it will start and
complete. Backfilling, together with processor reservation, allows large parallel jobs to
run while not underutilizing resources.

For the backfill policy to work effectively, each job should have a run limit specified
(via -W bsub option). In order to enforce that users should specify this option, the
external submission executable, esub, can be used. See ‘Validating Job Submissions’ on
page 91.

When backfilling is enabled, the system will compute the estimated start time for each
job based on the run limits of the currently started jobs. A given job (jobA) can backfill
the reserved processors of another job (jobB) if there is sufficient time for jobA to
complete, based on its run limit, before the estimated start time of jobB.

As an example, consider the sequence of events depicted in the Figure 9. ‘Example of
Backfilling’ on page 125. In this scenario, assume the cluster consists of a 4-CPU
multiprocessor host. A sequential job (job1) with a run limit of two hours is submitted
to a high priority queue and gets started at 8:00 am (figure (a)). Shortly afterwards, a
parallel job (job2) requiring all four CPUs is submitted. It cannot start right away
because of job1, so it reserves the remaining three processors (figure (b)). At 8:30 am,
another parallel job (job3) is submitted requiring only two processors and with a run
limit of one hour. Since job2 cannot start until 10:00am (when job1 finishes), its reserved
processors can be backfilled by job3 (figure (c)). Therefore job3 can complete before
job2’s start time, making use of the idle processors. If job3’s run limit was three hours,
���

�

for example, it would not be able to backfill job2’s reserved slots. Job 3 will finish at
9:30am and job1 at 10:00am, allowing job2 to start shortly after 10:00am.

The estimated start time of a job can be displayed using the bjobs -l command or by
viewing the detailed information about the job through xlsbatch.

)LJXUH�����([DPSOH�RI�%DFNILOOLQJ

See ‘Processor Reservation for Parallel Jobs’ on page 211 and ‘Backfill Scheduling’ on page 211
for configuration options for this feature.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
&RQWUROOLQJ�-RE�([HFXWLRQ

8QGHUVWDQGLQJ�-RE�([HFXWLRQ�(QYLURQPHQW

When LSF Batch runs your jobs, it tries to make it as transparent to the user as possible.
By default, the execution environment is maintained to be as close to the current
environment as possible. LSF Batch will copy the environment from the submission
host to the execution host. It also sets the umask and the current working directory.

Since a network can be heterogeneous, it is often impossible or undesirable to
reproduce the submission host’s execution environment on the execution host. For
example, if home directory is not shared between submission and execution host, LSF
Batch runs the job in the /tmp on the execution host. If the DISPLAY environment
variable is something like ‘Unix:0.0’, or ‘:0.0’, then it must be processed before
using on the execution host. These are automatically handled by LSF Batch.

Users can change the default behaviour by using a job starter, or by using the ‘-L’
option of the bsub command to change the default execution environment. See ‘Queue-
Level Job Starters’ on page 129 for detailed information on using a job starter at the queue
level.

For resource control purpose, LSF Batch also changes some of the execution
environment of jobs. These include nice values, resource limits, or any other
environment by configuring a job starter.

In addition to environment variables inherited from the user, LSF Batch also sets a few
more environment variables for batch jobs. These are:

• LSB_JOBID: Batch job ID assigned by LSF Batch.

• LSB_JOBINDEX: Index of the job that belongs to a job array.

• LSB_CHKPNT_DIR: This variable is set each time a checkpointed job is submitted.
The value of the variable is chkpntdir/jobId, a subdirectory of the checkpoint
directory that is specified when the job is submitted. The subdirectory is identified
by the job ID of the submitted job.

• LSB_HOSTS: The list of hosts that are used to run the batch job. For sequential jobs,
this is only one host name. For parallel jobs, this includes multiple host names.
���

�

• LSB_QUEUE: The name of the queue the job belongs to.

• LSB_JOBNAME: Name of the job.

• LSB_RESTART: Set to ‘Y’ if the job is a restarted job or if the job has been migrated.
Otherwise this variable is not defined.

• LSB_EXIT_PRE_ABORT: Set to an integer value representing an exit status. A pre-
execution command should exit with this value if it wants the job to be aborted
instead of requeued or executed.

• LSB_EXIT_REQUEUE: Set to the REQUEUE_EXIT_VALUES parameter of the
queue. This variable is not defined if REQUEUE_EXIT_VALUES is not configured
for the queue.

• LSB_JOB_STARTER: Set to the value of the job starter if a job starter is defined for
the queue.

• LSB_INTERACTIVE: Set to ‘Y’ if the job is submitted with -I option. Otherwise, it
is undefined.

• LS_JOBPID: Set to the process ID of the job.

• LS_SUBCWD: This is the directory on the submission when the job was submitted.
This is different from PWD only if the directory is not shared across machines or
when the execution account is different from the submission account as a result of
account mapping.

• By default, LSF transfers environment variables from the submission to the
execution host. However, some environment variables do not make sense when
transferred. When submitting a job from an NT to a UNIX machine, the -L option
of bsub can be used to reinitialize the environment variables. If submitting a job
from a UNIX machine to an NT machine, you can set the environment variables
explicitly in your job script. Alternatively, the Job Starter feature can be used to
reset the environment variables before starting the job.

LSF automatically resets the PATH on the execution host if the submission host is
of a different type. If the submission host is NT and the execution host is UNIX, the
PATH variable is set to /bin:/usr/bin:/sbin:/usr/sbin and LSF_BINDIR
(if defined in lsf.conf) is appended to it. If the submission host is UNIX and the
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
execution host is NT, the PATH variable is set to the system PATH variable with
LSF_BINDIR appended to it. LSF looks for the presence of the WINDIR variable in
the job’s environment to determine whether the job was submitted from an NT or
UNIX host. If WINDIR is present, it is assumed that the submission host was NT;
otherwise, the submission host is assumed to be a UNIX machine.

(QYLURQPHQW�9DULDEOH�+DQGOLQJ

LSF transfers most environment variables between submission and
execution hosts. The following environment variables are overridden
based on the values on the execution host:

COMPSPEC
COMPUTERNAME
NTRESKIT
OS2LIBPATH
PROCESSOR_ARCHITECTURE
PROCESSOR_LEVEL
SYSTEMDRIVE
SYSTEMROOT
WINDIR

These must be defined as system environment variables on the execution
host.

If the WINDIR on the submission and execution host are different, then the
system PATH variable on the execution host is used instead of that from the
submission host.

Avoid using drive names in environment variables (especially the %PATH
variable) for drives that are connected over the network. It is preferable to
use the UNC form of the path. This is because drive maps are shared
between all users logged on to a particular machine. For example, if an
interactive user has drive F: mapped to \\serverX\share, then any
batch job will also see drive F: mapped to \\serverX\share. However,
drive F: might have been mapped to a different share on the submission
host of the job.

NT
���

�

The Job Starter feature can be used to perform more site-specific handling
of environment variables. See ‘Job Starters’ on page 16 for more details.

1,&(�9DOXH�

Many LSF tools use LSF Remote Execution Server (RES) to run jobs such as lsrun,
lsmake, lstcsh, and lsgrun. You can control the execution priority of jobs started
via RES by modifying your LIM configuration file lsf.cluster.cluster. This can
be done by defining the REXPRI parameter for individual hosts. See ‘Descriptive Fields’
on page 182 for details of this parameter.

LSF Batch jobs can be run with a nice value as defined in your lsb.queues file. Each
queue can have a different nice value. See ‘NICE = integer’ on page 209 for details of this
parameter.

3UH�H[HFXWLRQ�DQG�3RVW�H[HFXWLRQ�FRPPDQGV

Your batch jobs can be accompanied with a pre-execution and a post-execution
command. This can be used for many purposes. For example, you can use these
commands to create or delete scratch directories, or check for necessary conditions
before running the real job. Details of these concepts are described in ‘Pre- and Post-
execution Commands’ on page 36.

The pre-execution and post-execution commands can be configured at the queue level
as described in ‘Queue-Level Pre-/Post-Execution Commands’ on page 224.

4XHXH�/HYHO�-RE�6WDUWHUV

Some jobs have to be started in a particular environment, or require some type of setup
to be performed before they are executed. In a shell environment, this situation is often
handled by writing such preliminary procedures into a file that itself contains a call to
start the desired job. This is referred to as a wrapper.

If users need to submit batch jobs that require this type of preliminary setup, LSF
provides a job starter function at the queue level. A queue-level job starter allows you
to specify an executable that will perform any necessary setup beforehand. One typical
use of this feature is to customize LSF for use with Atria ClearCase environment (see
‘Support for Atria ClearCase’ on page 275).
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
A queue-level job starter is specified in the queue definition (in the lsb.queues file)
using the JOB_STARTER parameter. When a job starter is set up in this way, all jobs
executed from this queue will be executed via the job starter (i.e., called by the specified
job starter process rather than initiated by the batch daemon process). For example, the
following might be defined in a queue:

Begin Queue
.
JOB_STARTER = xterm -e
.
End Queue

In this case, all jobs submitted into this queue will be run under an xterm terminal
emulator.

The following are other possible uses of a job starter:

• Set job starter to ‘$USER_STARTER’; enables users to define their own job starters
by defining the environment variable USER_STARTER. LSF also supports a user-
definable job starter at the command level. See the LSF Batch User’s Guide for
detailed information about setting up and using a command-level job starter to run
interactive jobs.

• Set job starter to ‘make clean;’ causes make clean to be run prior to user job.

• Set job starter to pvmjob or mpijob; allows you to run PVM or MPI jobs with
LSF Batch, where pvmjob and mpijob are job starters for parallel jobs written in
PVM or MPI.

A queue-level job starter is configured in the queue definition. See ‘Job Starter’ on
page 227 for details.

Note
The difference between a job starter and a pre-execution command lies in the effect each
can have on the job being executed. A pre-execution command must run successfully
and exit, which signals the batch daemon to run the job. Because the pre-execution
command is an unrelated process, it does not effect the execution environment of the
job. The job starter, however, is the process responsible for invoking the user command,
and as such, controls the job’s execution environment.
���

�

8VLQJ�/LFHQVHG�6RIWZDUH�ZLWK�/6)�%DWFK

Software licenses are valuable resources that must be utilized to their full potential.
This section discusses how LSF Batch can help manage licensed applications to
maximize utilization and minimize job failure due to license problems.

Many applications have restricted access based on the number of software licenses
purchased. LSF can help manage licensed software by automatically forwarding jobs
to licensed hosts, or by holding jobs in batch queues until licenses are available.

There are three main types of software license: host locked, host locked counted, and
network floating.

+RVW�/RFNHG�/LFHQVHV

Host locked software licenses allow users to run an unlimited number of copies of the
product on each of the hosts that has a license. You can configure a boolean resource
to represent the software license, and configure your application to require the license
resource. When users run the application, LSF chooses the best host from the set of
licensed hosts.

See ‘Changing LIM Configuration’ on page 55 for instructions on configuring boolean
resources, and ‘The lsf.task and lsf.task.cluster Files’ on page 187 for instructions on
configuring resource requirements for an application.

+RVW�/RFNHG�&RXQWHG�/LFHQVHV

Host locked counted licenses are only available on specific licensed hosts, but also
place a limit on the maximum number of copies available on the host. If an external
LIM can get the number of licenses currently available, you can configure an external
load index licenses giving the number of free licenses on each host. By specifying
licenses>=1 in the resource requirements for the application, you can restrict the
application to run only on hosts with available licenses.

See ‘Changing LIM Configuration’ on page 55 for instructions on writing and using an
ELIM, and ‘The lsf.task and lsf.task.cluster Files’ on page 187 for instructions on
configuring resource requirements for an application.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
If a shell script check_license can check license availability and acquires a license if
one is available, another solution is to use this script as a pre-execution command when
submitting the licensed job.

% bsub -m licensed_hosts -E check_license licensed_job

An alternative is to configure the check_license script as a queue level pre-
execution command. See ‘Queue-Level Pre-/Post-Execution Commands’ on page 224 for
more details.

It is possible that the license becomes unavailable between the time the
check_license script is run, and when the job is actually run. To handle this case,
the LSF administrator can configure a queue so that jobs in this queue will be requeued
if they exit with value(s) indicating that the license was not successfully obtained. See
‘Automatic Job Requeue’ on page 231.

)ORDWLQJ�/LFHQVHV

A floating license allows up to a fixed number of machines or users to run the product
at the same time, without restricting which host the software can run on. Floating
licenses can be thought of as ‘cluster resources’; rather than belonging to a specific host,
they belong to all hosts in the cluster.

Using LSF Batch to run licensed software can improve the utilization of the licenses -
the licenses can be kept in use 24 hours a day, 7 days a week. For expensive licenses,
this increases their value to the users. Also, productivity can be increased, as users do
not have to wait around for a license to become available.

LSF can be used to manage floating licenses using the shared resources feature
together with resource reservation and job requeuing. Both situations where all license
jobs are run through LSF Batch and when licenses can be used outside of batch control
are discussed.

$OO�/LFHQVHV�8VHG�7KURXJK�/6)�%DWFK

If all jobs requiring licenses are submitted through LSF Batch, then LSF Batch could
regulate the allocation of licenses to jobs and ensure that a job is not started if the
required license is not available. A static resource is used to hold the total number of
licenses that are available. The static resource is used by LSF Batch as a counter which
���

�

is decremented by the resource reservation mechanism each time a job requiring that
resource is started.

For example, suppose that there are 10 licenses for the Verilog package shared by all
hosts in the cluster. The LSF Base configuration files should be specified as shown
below. The resource is static-valued so an ELIM is not necessary.

lsf.shared
Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
verilog Numeric () N (Floating licenses for Verilog)
End Resource

lsf.cluster.cluster

Begin ResourceMap
RESOURCENAME LOCATION
verilog (10@[all])
End ResourceMap

The users would submit jobs requiring Verilog licenses as follows:

bsub -R ’rusage[verilog=1]’ myprog

If a dedicated queue is defined to run Verilog jobs, then the LSF administrator can
specify the resources requirements at the queue-level:

Begin Queue
QUEUE_NAME = q_verilog
RES_REQ=rusage[verilog=1]
End Queue

If the Verilog licenses are not cluster-wide and can only be used by some hosts in the
cluster, then the resource requirement string should be modified to include the
’defined()’ tag in the select section, as follows:

select[defined(verilog)] rusage[verilog=1]

For each job in the queue “q_verilog”, LSF Batch will reserve a Verilog license before
dispatching a job, and release the license when the job completes. The number of
licenses being reserved can be shown using the bhosts -s command. One limitation
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
of this approach is that if a job does not actually use the license then the licenses will
be under-utilized. This could happen if the user mistakenly specifies that their
application needs a Verilog license, or submits a non-Verilog job to a Verilog queue.
LSF Batch assumes that each job indicating that it requires a Verilog license will
actually use it, and simply subtracts the total number of jobs requesting Verilog
licenses from the total number available to decide whether an additional job can be
dispatched.

/LFHQVHV�8VHG�2XWVLGH�RI�/6)�%DWFK

To handle the situation where application licenses are used by jobs outside of LSF
Batch, an ELIM should be used to collect the actual number of licenses available
instead of relying on a statically configured value. LSF Batch is periodically informed
of the number of available licenses and takes this into consideration when scheduling
jobs. Assuming there are a number of licenses for the Verilog package that can be used
by all the hosts in the cluster, the LSF Base configuration files could be set up to
monitor this resource as follows:

lsf.shared
Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
verilog Numeric 60 N (Floating licenses for Verilog)
End Resource

lsf.cluster.cluster

Begin ResourceMap
RESOURCENAME LOCATION
verilog ([all])
End ResourceMap

The INTERVAL in the lsf.shared file would indicate how often the ELIM was
expected to update the value of the ’Verilog’ resource (in this case every 60 seconds).
Since this resource is shared by all hosts in the cluster, the ELIM would only need to be
started on the master host. If the Verilog licenses can only be accessed by some hosts
in the cluster, the LOCATION field of the “ResourceMap” section should be specified
as ([hostA hostB hostC ...]). In this case an ELIM is only started on hostA.

The users would submit jobs requiring Verilog licenses as follows:

bsub -R ’rusage[verilog=1:duration=1]’ myprog
���

�

LSF administrators can set up a queue dedicated to jobs that require Verilog licenses:

Begin Queue
QUEUE_NAME = q_verilog
RES_REQ=rusage[verilog=1:duration=1]
End Queue

The queue named q_verilog contains jobs that will reserve one Verilog license when it
is started. Notice the duration specified (in minutes) is used to avoid the under
utilization of shared resources. When duration is specified, the shared resource will be
released after the specified duration expires. The reservation prevents the multiple jobs
which are started in a short interval from over-using the available licenses. By limiting
the duration of the reservation and using the actual license usage as reported by the
ELIM, underutilization is also avoided and licenses used outside of LSF can be
accounted for.

In situations where an interactive job outside the control of LSF Batch competes with
batch jobs for a software license, it is possible that a batch job, having reserved the
software license, may fail to start as the very license is intercepted by an interactive job.
To handle this situation it is required that LSF Batch requeue the job for future
execution. Job requeue can be achieved by using REQUEUE_EXIT_VALUES keyword
in a queue’s definition (see lsb.queues(5)). If a job exits with one of the values in
the REQUEUE_EXIT_VALUES, LSF Batch will requeue the job. For example, jobs
submitted to the following queue will use Verilog licenses:

Begin Queue
QUEUE_NAME = q_verilog
RES_REQ=rusage[verilog=1:duration=1]
application exits with value 99 if it fails to get license
REQUEUE_EXIT_VALUE = 99
JOB_STARTER = lic_starter
End Queue

All jobs in the queue are started by lic_starter, which checks if the application
failed to get a license and exits with an exit code of 99. This will cause the job to be
requeued and the system will attempt to reschedule it at a later time. lic_starter
can be coded as follows:

#!/bin/sh
lic_starter: If application fails with no license, exit 99,
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
otherwise, exit 0. The application displays
"no license" when it fails without license available.
$* 2>&1 | grep "no license"
if [$? != "0"]
then

exit 0 # string not found, application got the license
else

exit 99
fi

([DPSOH�/6)�%DWFK�&RQILJXUDWLRQ�)LOHV

([DPSOH�4XHXHV

There are numerous ways to build queues. This section provides some examples.

,GOH�4XHXH

You want to dispatch large batch jobs only to those hosts that are idle. These jobs
should be suspended as soon as an interactive user begins to use the machine. You can
(arbitrarily) define a host to be idle if there has been no terminal activity for at least 5
minutes and the 1 minute average run queue is no more than 0.3. The idle queue does
not start more than one job per processor.

Begin Queue
QUEUE_NAME = idle
NICE = 20
RES_REQ = it>5 && r1m<0.3
STOP_COND = it==0
RESUME_COND = it>10
PJOB_LIMIT = 1
End Queue
���

�

2ZQHUV�4XHXH

If a department buys some fast servers with its own budget, they may want to restrict
the use of these machines to users in their group. The owners queue includes a USERS
section defining the list of users and user groups that are allowed to use these
machines. This queue also defines fairshare policy so that users can have equal sharing
of resources.

Begin Queue
QUEUE_NAME = owners
PRIORITY = 40
r1m = 1.0/3.0
FAIRSHARE = USER_SHARES[[default, 1]]
USERS = server_owners
HOSTS = server1 server2 server3
End Queue

1LJKW�4XHXH

On the other hand, the department might want to allow other people to use its
machines during off hours so that the machine cycles are not wasted. The night queue
only schedules jobs after 7 p.m. and kills jobs around 8 a.m. every day. Jobs are also
allowed to run over the weekend.

To ensure jobs in the night queue do not hold up resources after the run window is
closed, TERMINATE_WHEN is defined as WINDOW so that when the run window is
closed, jobs that have been started but have not finished will be killed.

Because no USERS section is given, all users can submit jobs to this queue. The HOSTS
section still contains the server host names. By setting MEMLIMIT for this queue, jobs
that use a lot of real memory automatically have their time sharing priority reduced on
hosts that support the RLIMIT_RSS resource limit.

This queue also reserves swp memory of 40MB for the job and this reservation
decreases to 0 over 20 minutes after the job starts.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
Begin Queue
QUEUE_NAME = night
RUN_WINDOW = 5:19:00-1:08:00 19:00-08:00
PRIORITY = 5
RES_REQ = ut<0.5 && swp>50 rusage[swp=40:duration=20:decay=1]
r1m = 0.5/3.0
MEMLIMIT = 5000
TERMINATE_WHEN = WINDOW
HOSTS = server1 server2 server3
DESCRIPTION = Low priority queue for overnight jobs
End Queue

/LFHQVH�4XHXH

Some software packages have fixed licenses and must be run on certain hosts. Suppose
a package is licensed to run only on a few hosts that are tagged with product
resource. Also suppose that on each of these hosts, only one license is available.

To ensure correct hosts are chosen to run jobs, a queue level resource requirement
‘type==any && product’ is defined. To ensure that the job gets a license when it
starts, the HJOB_LIMIT has been defined to limit one job per host. Since software
licenses are expensive resources that should not be under-utilized, the priority of this
queue has been defined to be higher than any other queues so that jobs in this queue
are considered for scheduling first. It also has a small nice value so that more CPU time
is allocated to jobs from this queue.

Begin Queue
QUEUENAME = license
NICE = 0
PRIORITY = 80
HJOB_LIMIT = 1
RES_REQ = type==any && product
r1m = 2.0/4.0
DESCRIPTION = Licensed software queue
End Queue

6KRUW�4XHXH

The short queue can be used to give faster turnaround time for short jobs by running
them before longer jobs.
���

�

Jobs from this queue should always be dispatched first, so this queue has the highest
PRIORITY value. The r1m scheduling threshold of 2 and no suspending threshold
mean that jobs are dispatched even when the host is being used and are never
suspended. The CPULIMIT value of 15 minutes prevents users from abusing this
queue; jobs running more than 15 minutes are killed.

Because the short queue runs at a high priority, each user is only allowed to run one
job at a time.

Begin Queue
QUEUE_NAME = short
PRIORITY = 50
r1m = 2/
CPULIMIT = 15
UJOB_LIMIT = 1
DESCRIPTION = For jobs running less than 15 minutes
End Queue

Because the short queue starts jobs even when the load on a host is high, it can preempt
jobs from other queues that are already running on a host. The extra load created by
the short job can make some load indices exceed the suspending threshold for other
queues, so that jobs from those other queues are suspended. When the short queue job
completes, the load goes down and the preempted job is resumed.

)URQW�(QG�4XHXH

Some special-purpose computers are accessed through front end hosts. You can
configure the front end host in lsb.hosts so that it accepts only one job at a time, and
then define a queue that dispatches jobs to the front end host with no scheduling
constraints.

Suppose hostD is a front end host:

Begin Queue
QUEUE_NAME = front
PRIORITY = 50
HOSTS = hostD
JOB_STARTER = pload
DESCRIPTION = Jobs are queued at hostD and started with pload command
End Queue
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
146�)RUZDUG�4XHXH

To interoperate with NQS, you must configure one or more LSF Batch queues to
forward jobs to remote NQS hosts. An NQS forward queue is an LSF Batch queue with
the parameter NQS_QUEUES defined. The following queue forwards jobs to the NQS
queue named pipe on host cray001:

Begin Queue
QUEUE_NAME = nqsUse
PRIORITY = 30
NICE = 15
QJOB_LIMIT = 5
CPULIMIT = 15
NQS_QUEUES = pipe@cray001
DESCRIPTION = Jobs submitted to this queue are forwarded to NQS_QUEUES
USERS = all
End Queue

([DPSOH�lsb.hosts�ILOH

The lsb.hosts file defines host attributes. Host attributes also affect the scheduling
decisions of LSF Batch. By default LSF Batch uses all server hosts as configured by LIM
configuration files. In this case you do not have to list all hosts in the Host section. For
example:

Begin Host
HOST_NAME MXJ JL/U swp # This line is keyword(s)
default 2 1 20
End Host

The virtual host name default refers to each of the other hosts configured by LIM but
is not explicitly mentioned in the Host section of the lsb.hosts file. This file defines
a total allowed job slot limit of 2 and a per user job limit of 1 for every batch server host.
It also defines a scheduling load threshold of 20MB of swap memory.
���

�

In most cases your cluster is heterogeneous in some way, so you might have different
controls for different machines. For example:

Begin Host
HOST_NAME MXJ JL/U swp # This line is keyword(s)
hostA 8 2 ()
hppa 2 () ()
default 2 1 20
End Host

In this file you add host type hppa in the HOST_NAME column. This will include all
server hosts from LIM configuration that have host type hppa and are not explicitly
listed in the Host section of this file. You can also use a host model name for this
purpose. Note the ‘()’ in some of the columns. It refers to undefined parameters and
serves as a place-holder for that column.

lsb.hosts file can also be used to define host groups and host partitions, as
exemplified in ‘Sharing Hosts Between Two Groups’ on page 115.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7XQLQJ�/6)�%DWFK�
���

�� 0DQDJLQJ�/6)�0XOWL&OXVWHU

:KDW�LV�/6)�0XOWL&OXVWHU"

Within a single organization, divisions, departments, or sites may have separate LSF
clusters managed independently. Many organizations have realized it is desirable to
allow their multitude of clusters to cooperate to reap the benefits of global load
sharing:

• Users can access a diverse collection of computing resources and get better
performance as well as computing capabilities. Many machines that would
otherwise be idle can be used to process jobs. Multiple machines can be used to
process a single parallel job. All these lead to increased user productivity.

• The demands for computing resources fluctuate widely across departments and
over time. Partitioning the resources of an organization along user and
departmental boundaries forces each department to plan for computing resources
according to its maximum demand. Load sharing makes it possible for an
organization to plan computing resources globally based on total demand.
Resources can be added anywhere and made available to the entire organization.
Global policies for load sharing can be implemented. With efficient resource
sharing, the organization can realize increased computer usage in an economical
manner.

LSF MultiCluster enables a large organization to form multiple cooperating clusters of
computers so that load sharing happens not only within the clusters but also among
them. It enables load sharing across large numbers of hosts, allows resource ownership
and autonomy to be enforced, non-shared user accounts and file systems to be
supported, and communication limitations among the clusters to be taken into
consideration in job scheduling.

LSF MultiCluster is a separate product in the LSF product suite. You must obtain a
specific license for LSF MultiCluster before you can use it.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

0DQDJLQJ�/6)�0XOWL&OXVWHU�
This chapter describes the configuration and operational details of LSF MultiCluster.
The topics covered are:

• Monitoring of load and host information of remote clusters

• Accessing control of inter-cluster interactive tasks

• Executing batch jobs transparently on remote clusters

• Account mapping between clusters not sharing a uniform username/user ID
space.

(QDEOLQJ�0XOWL&OXVWHU�)XQFWLRQDOLWLHV

The following steps should be followed to enable the sharing of load information,
interactive tasks and batch jobs between clusters:

1) Define the multicluster feature in the lsf.cluster.cluster file. Your
licence must have multicluster support.

2) Configure LIM to specify the sharing of load information and interactive job
access control.

3) Configure LSF Batch to specify the queues sharing jobs and account mapping
between the users.

The LIM configuration files lsf.shared and lsf.cluster.cluster (stored in
LSF_CONFDIR) are affected by multicluster operation. For sharing to take place
between clusters, they must share common definitions in terms of host types, models,
and resources. For this reason, it is desirable to make the lsf.shared file the same on
each cluster, often by putting it into a shared file system, or replicating it across all
clusters.

Where it is not possible to maintain a common lsf.shared file, and each cluster
maintains its own, the exchange of system information and jobs between clusters is
based on the common definitions. A resource, host type, or model defined in one
cluster is considered to be equivalent to that defined in another cluster if the name is
the same. It is possible, for example, to define a host model with the same name but
with different CPU factors so that each cluster considers the relative CPU speed
differently.
���

�

In such cases, each cluster will interpret resource, host type or model information
received from another cluster based on its local lsf.shared file. If the definition is
not found locally, then it is ignored.

For example, if the remote cluster defines a static boolean resource local_res and
associates it with hostA, then when hostA is viewed from the local cluster,
local_res will not be associated with it. Similarly, a user will not be able to submit a
job locally specifying a resource which is only defined in a remote cluster.

Each LIM reads the lsf.shared file and its own lsf.cluster.cluster file. All
information about a remote cluster is retrieved dynamically by the master LIM’s on
each cluster communicating with each other. However, before this can occur a master
LIM must know the name of at least some of the LSF server hosts in each remote cluster
with which it will interact. The names of the servers in a remote cluster are used to
locate the current master LIM on that cluster as well as to ensure that any remote
master is a valid host for that cluster. The latter is necessary to ensure security and
prevent a bogus LIM from interacting with your cluster.

7KH�lsf.shared�)LOH

The lsf.shared file in LSF_CONFDIR should list the names of all clusters. For
example:

Begin Cluster
ClusterName
clus1
clus2
End Cluster

The LIM will read the lsf.cluster.cluster file in LSF_CONFDIR for each remote
cluster and save the first ten host names listed in the Host section. These will be
considered as valid servers for that cluster, that is, one of these servers must be up and
running as the master.

If LSF_CONFDIR is not shared or replicated then it is necessary to specify a list of valid
servers in each cluster using the option Servers in the Cluster section. For example,

Begin Cluster
ClusterName Servers
clus1 (hostC hostD hostE)
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

0DQDJLQJ�/6)�0XOWL&OXVWHU�
clus2 (hostA hostB hostF)
End Cluster

The hosts listed in the servers column are the contacts for LIMs in remote clusters to
get in touch with the local cluster. One of the hosts listed in the Servers column must
be up and running as the master for other clusters to contact the local cluster.

7KH�lsf.cluster.cluster�)LOH

To enable the multicluster feature, insert the following section into the
lsf.cluster.cluster file.

Begin Parameters
PRODUCTS=LSF_Base LSF_MultiCluster LSF_Batch
End Parameters

Note
The license file must support the LSF MultiCluster feature. If you have configured the
cluster to run LSF MultiCluster on all hosts, and the license file does not contain the
LSF MultiCluster feature, then the hosts will be unlicensed, even if you have valid
licenses for other LSF components. See ‘Setting Up the License Key’ on page 36 of the
LSF Installation Guide for more details.

By default, the local cluster can obtain information about all other clusters specified in
lsf.shared. However, if the local cluster is only interested in certain remote clusters,
you can use the following section in lsf.cluster.cluster to limit which remote
clusters your cluster is interested in. For example,

Begin RemoteClusters
CLUSTERNAME
clus3
clus4
End RemoteClusters

This means local applications will not know anything about clusters other than clusters
clus3 and clus4. Note that this also affects the way RES behaves when it is
authenticating a remote user. Remote execution requests originating from users
outside of these clusters are rejected. The default behaviour is to accept any request
from all the clusters in lsf.shared.
���

�

The RemoteClusters section may be used to specify the following parameters
associated with each cluster in addition to the CLUSTERNAME parameter.

&$&+(B,17(59$/

Load and host information is requested on demand from the remote cluster and cached
by the local master LIM. Clients in the local cluster receives the cached copy of the
remote cluster information. This parameter controls how long load information from
the remote cluster is cached in seconds. The default is 60 seconds. Upon a request from
a command, the cached information is used if it is less than CACHE_INTERVAL second
old otherwise fresh information is retrieved from the relevant remote cluster by the
local master LIM and returned to the user. Host information is cached twice as long as
load information is.

(48,9

The LSF utilities such as lsload, lshosts, lsplace, and lsrun normally only
return information about the local cluster. To get information about or run tasks on
hosts in remote clusters, you must explicitly specify a cluster name (see sections
below). To make resources in remote clusters as transparent as possible to the user, you
can specify a remote cluster as being equivalent to the local cluster. The master LIM will
then consider all equivalent clusters when servicing requests from clients for load, host
or placement information. Therefore, you do not have to explicitly specify remote
cluster names. For example, lsload will list hosts of the local cluster as well as the
remote clusters.

5(&9B)520

By default, if two clusters are configured to access each other’s load information, they
also accept interactive jobs from each other. If you want your cluster to access load
information of another cluster but not to accept interactive jobs from the other cluster,
you set RECV_FROM to ‘N’. Otherwise, set RECV_FROM to ‘Y’.

([DPSOH

For cluster clus1, clus2 is equivalent to the local cluster. Load information is refreshed
every 30 seconds. However, clus1 rejects interactive jobs from clus2.

Excerpt of lsf.cluster.clus1
Begin RemoteClusters
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

0DQDJLQJ�/6)�0XOWL&OXVWHU�
CLUSTERNAME EQUIV CACHE_INTERVAL RECV_FROM
clus2 Y 30 N
...
End RemoteClusters

Cluster clus2 does not treat clus1 as equivalent to the local cluster. Load information is
refreshed every 45 seconds. Interactive jobs from clus1 are accepted.

Excerpt of lsf.cluster.clus1
Begin RemoteClusters
CLUSTERNAME EQUIV CACHE_INTERVAL RECV_FROM
clus1 N 45 Y
...
End RemoteClusters

5RRW�$FFHVV

By default, root access across clusters is not allowed. To allow root access from a
remote cluster, specify LSF_ROOT_REX=all in lsf.conf. This implies that root jobs
from both the local and remote clusters are accepted. This applies to both interactive
and batch jobs.

If you want cluster clus1 and clus2 to allow root access execution for local jobs only, you
insert the line LSF_ROOT_REX=local into the lsf.conf of both cluster clus1 and
cluster clus2. However, if you want clus2 to also allow root access execution from any
cluster, change the line in lsf.conf of cluster clus2 to LSF_ROOT_REX=all.

Note
lsf.conf file is host type specific and not shared across different platforms. You
must make sure that the lsf.conf file for all your host types are changed
consistently.

/6)�%DWFK�&RQILJXUDWLRQ

To enable batch jobs to flow across clusters the keywords SNDJOBS_TO and
RCVJOBS_FROM are used in the queue definition of the lsb.queues file.
���

�

The syntax is as follows:

Begin Queue
QUEUE_NAME=normal
SNDJOBS_TO=Queue1@Cluster1 Queue2@Cluster2 ... QueueN@ClusterN
RCVJOBS_FROM=Cluster1 Cluster2 ... ClusterN
PRIORITY=30
NICE=20
End Queue

Note
You do not specify a remote queue in the RCVJOBS_FROM parameter. The
administrator of the remote cluster determines which queues will forward jobs to the
normal queue in this cluster.

It is up to you and the administrator of the remote clusters to ensure that the policy of
the local and remote queues are equivalent in terms of the scheduling behaviour seen
by users’ jobs.

If a RCVJOBS_FROM queue specifies REQUEUE_EXIT_VALUES, it only applies to jobs
submitted locally. Even if a remote job’s exit value matches a value specified in the
REQUEUE_EXIT_VALUES, the job is not requeued but the job and its exit value are
forwarded to the submission cluster.

When accepting a job with a pre-execution command from a remote cluster, the local
cluster can configure the maximum number of times it will attempt the pre-execution
command before returning the job to the submission cluster. The submission cluster
will forward the job to one cluster at a time. The parameter to control the maximum
number of times a remote jobs pre-exec command is retried by setting
MAX_PREEXEC_RETRY in lsb.params.

5HPRWH�2QO\�0XOWL&OXVWHU�4XHXHV

In order to set up a queue that will forward jobs to remote clusters but will not run any
jobs in the local cluster, you can specify that the queue uses no local hosts. This is done
by setting the HOSTS parameter in the queue to the keyword “none”.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

0DQDJLQJ�/6)�0XOWL&OXVWHU�
For example, the following definition sets up a queue remote_only in cluster clus1
which sends the job to the import queue in cluster clus2:

Begin Queue
QUEUE_NAME = remote_only
HOSTS = none
SNDJOBS_TO = import@clus2
PRIORITY = 30
DESCRIPTION = A remote only queue
End Queue

Any jobs submitted to queue remote_only will be forwarded to the queue import in
cluster clus2. This is done without attempting to schedule the job locally which reduces
the latency of multicluster queues.

For clus2, the queue import can be specified as follows:

Begin Queue
QUEUE_NAME = import
RCVJOBS_FROM = clus1
PRIORITY = 50
DESCRIPTION = A queue that imports jobs from clus1
End Queue

,QWHU�FOXVWHU�/RDG�DQG�+RVW�,QIRUPDWLRQ�6KDULQJ

The information collected by LIMs on remote clusters can be viewed locally. The list of
clusters and associated resources can be viewed with the lsclusters command.

% lsclusters
CLUSTER_NAME STATUS MASTER_HOST ADMIN HOSTS SERVERS
clus2 ok hostA user1 3 3
clus1 ok hostC user2 3 3
���

�

If you have defined EQUIV to be ‘Y’ for cluster clus2 in your lsf.cluster.clus1 file,
you will see all hosts in cluster clus2 if you run lsload or lshosts from cluster clus1.
For example:

% lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA NTX86 PENT200 10.0 1 64M 100M Yes (pc nt)
hostF HPPA HP735 14.0 1 58M 94M Yes (hpux cs)
hostB SUN41 SPARCSLC 8.0 1 15M 29M Yes (sparc bsd)
hostD HPPA A900 30.0 4 264M 512M Yes (hpux cs bigmem)
hostE SGI ORIGIN2K 36.0 32 596M 1024M Yes (irix cs bigmem)
hostC SUNSOL SunSparc 12.0 1 56M 75M Yes (solaris cs)

You can use a cluster name in place of a host name to get information specific to a
cluster. For example:

% lshosts clus1
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostD HPPA A900 30.0 4 264M 512M Yes (hpux cs bigmem)
hostE SGI ORIGIN2K 36.0 32 596M 1024M Yes (irix cs bigmem)
hostC SUNSOL SunSparc 12.0 1 56M 75M Yes (solaris cs)

% lshosts clus2
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA NTX86 PENT200 10.0 1 64M 100M Yes (pc nt)
hostF HPPA HP735 14.0 1 58M 94M Yes (hpux cs)
hostB SUN41 SPARCSLC 8.0 1 15M 29M Yes (sparc bsd)

% lsload clus1 clus2
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostD ok 0.2 0.3 0.4 19% 6.0 6 3 146M 319M 52M
hostC ok 0.1 0.0 0.1 1% 0.0 3 43 63M 44M 7M
hostA ok 0.3 0.3 0.4 35% 0.0 3 1 40M 42M 10M
hostB busy *1.3 1.1 0.7 68% *57.5 2 4 18M 25M 8M
hostE lockU 1.2 2.2 2.6 30% 5.2 35 0 10M 293M 399M
hostF unavail

LSF commands lshosts, lsload, lsmon, lsrun, lsgrun, and lsplace can accept a
cluster name in addition to host names.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

0DQDJLQJ�/6)�0XOWL&OXVWHU�
5XQQLQJ�,QWHUDFWLYH�-REV�RQ�5HPRWH�&OXVWHUV

The lsrun and lslogin commands can be used to run interactive jobs both within
and across clusters. See ‘Running Batch Jobs across Clusters’ on page 189 of the LSF Batch
User’s Guide for examples.

You can configure the multicluster environment so that one cluster accepts interactive
jobs from the other cluster, but not vice versa. For example, to make clus1 reject
interactive jobs from clus2, you need to specify the RECV_FROM field in file
lsf.cluster.clus1:

Begin RemoteClusters
CLUSTERNAME EQUIV CACHE_INTERVAL RECV_FROM
clus2 Y 30 N
End RemoteClusters

When a user in clus2 attempts to use the cluster clus1, an error will result. For example:

% lsrun -m clus1 -R - hostname
ls_placeofhosts: Not enough host(s) currently eligible

Cluster clus2 will not make any placement of jobs on clus1 and therefore lsrun will
return an error about not being able to find enough hosts.

% lsrun -m hostC -R - hostname
ls_rsetenv: Request from a non-LSF host rejected

In this case, the job request is sent to the host hostC and the RES on hostC rejects the job
as it is not considered a valid LSF host.

Note
RECV_FROM only controls accessibility of interactive jobs. It does not affect jobs
submitted to LSF Batch.
���

�

'LVWULEXWLQJ�%DWFK�-REV�$FURVV�&OXVWHUV

As the administrator, you can configure a queue to send jobs to a queue in a remote
cluster. Jobs submitted to the local queue can automatically get sent to remote clusters.
The following commands can be used to get information about multiple clusters:

bclusters

The bclusters command displays a list of queues together with their relationship
with queues in remote clusters.

% bclusters
LOCAL_QUEUE JOB_FLOW REMOTE CLUSTER STATUS
testmc send testmc clus2 ok
testmc recv - clus2 ok

The JOB_FLOW field describes whether the local queue is to send jobs to or receive jobs
from the remote cluster.

If the value of JOB_FLOW is send (that is, SNDJOBS_TO is defined in the local queue),
then the REMOTE field indicates a queue name in the remote cluster. If the remote
queue in the remote cluster does not have RCVJOBS_FROM defined to accept jobs from
the cluster, the status field will never be ok. It will either be disc, or reject, where
disc means that the communication between the two clusters has not been established
yet. This could occur if there are no jobs waiting to be dispatched or the remote master
cannot be located. If remote cluster agrees to accept jobs from the local queue and
communication has been successfully established, the status will be ok, otherwise the
status will be rejected.

If the value of JOB_FLOW is recv (that is, RCVJOBS_FROM is defined in the local
queue), then the REMOTE field is always ‘-’. The CLUSTER field then indicates the
cluster name from which jobs will be accepted. The status field will be ok if a
connection with the remote cluster has established.

% bclusters
LOCAL_QUEUE JOB_FLOW REMOTE CLUSTER STATUS
testmc send testmc clus2 disc
testmc recv - clus2 disc
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

0DQDJLQJ�/6)�0XOWL&OXVWHU�
bqueues

The -m host_name option can optionally take a cluster name to display the queues in a
remote cluster.

% bqueues -m clus2
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
fair 3300 Open:Active 5 - - - 0 0 0 0
interactive 1055 Open:Active - - - - 0 0 0 0
testmc 55 Open:Active - - - - 5 2 2 1
priority 43 Open:Active - - - - 0 0 0 0

bjobs

The bjobs command can display the cluster name in the FROM_HOST and EXEC_HOST
fields. The format of these fields can be ‘host@cluster’ to indicate which cluster the
job originated from or was forwarded to. Use the -w option to get the full cluster name.
To query the jobs in a specific cluster, use the -m option and specify the cluster name.

% bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
101 user7 RUN testmc hostC hostA@clus2 simulate Oct 8 18:32
102 user7 USUSP testmc hostC hostB@clus2 simulate Oct 8 18:56
104 user7 RUN testmc hostA@clus2 hostC verify Oct 8 19:20

% bjobs -m clus2
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
521 user7 RUN testmc hostC@clus1 hostA simulate Oct 8 18:35
522 user7 USUSP testmc hostC@clus1 hostB simulate Oct 8 19:23
520 user7 RUN testmc hostA hostC@clus1 verify Oct 8 19:26

Note that jobs forwarded to a remote cluster are assigned new job IDs. You only need
to use local job IDs when manipulating local jobs. The SUBMIT_TIME field displays the
real job submission time for local jobs, and job forwarding time for jobs from remote
clusters.
���

�

bhosts

To view the hosts of a specific cluster you can use a cluster name in place of a host
name.

% bhosts clus2
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hostA ok - 10 1 1 0 0 0
hostB ok - 10 1 1 0 0 0
hostF closed - 3 3 3 0 0 0

bhist

The bhist command displays the history of events about when a job is forwarded to
another cluster or was accepted from another cluster.

% bhist -l 101
Job Id <101>, User <user7>, Project <default>, Command <simulate>
Tue Oct 08 18:32:11: Submitted from host <hostC> to Queue <testmc>, CWD <

/homes/user7>, Requested Resources <type!=ALPHA>
;

Tue Oct 08 18:35:07: Forwarded job to cluster clus2;
Tue Oct 08 18:35:25: Dispatched to <hostA>;
Tue Oct 08 18:35:35: Running with execution home </homes/user7>, Execution C

WD </homes/user7>, Execution Pid <25212>;
Tue Oct 08 20:30:50: USER suspend action initiated (actpid 25672);
Tue Oct 08 20:30:50: Suspended by the user or administrator.

Summary of time in seconds spent in various states by Tue Oct 08 20:35:24 1996
PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
176 0 6943 274 0 0 7393

$FFRXQW�0DSSLQJ�%HWZHHQ�&OXVWHUV

By default, LSF assumes a uniform user name space within a cluster and between
clusters, but it is not uncommon for an organization to fail to satisfy this assumption.
LSF Batch supports the execution of batch jobs across non-uniform user name spaces
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

0DQDJLQJ�/6)�0XOWL&OXVWHU�
between clusters by allowing user account mapping between such clusters—at both
the system level and the individual user level.

8VHU�/HYHO�$FFRXQW�0DSSLQJ

Individual users of the LSF cluster can set up their own account mapping by setting up
a .lsfhosts file in their home directories. The .lsfhosts file used to support
account mapping can be used to specify cluster names in place of host names.

([DPSOH���

A user has accounts on two clusters, clus1 and clus2. On cluster clus1, the user name is
userA and on clus2 the user name is user_A. To run jobs in either cluster under the
appropriate user name, the .lsfhosts files should be set up as follows:

On machines in cluster clus1:

% cat ~userA/.lsfhosts
clus2 user_A

On machines in cluster clus2:

% cat ~user_A/.lsfhosts
clus1 userA

([DPSOH���

A user has the account userA on cluster clus1 and wants to use the lsfguest account
when running jobs on cluster clus2. The .lsfhosts files should be set up as follows:

On machines in cluster clus1:

% cat ~userA/.lsfhosts
clus2 lsfguest send

On machines in cluster clus2:

% cat ~lsfguest/.lsfhosts
clus1 userA recv
���

�

([DPSOH���

A site has two clusters, clus1 and clus2. A user has a uniform account name as userB on
all hosts in clus2. However, in clus1, this user has a uniform account name as userA,
except on hostX, on which he has the account name userA1. This user would like to use
both clusters transparently.

To implement this mapping, the user should set the .lsfhosts files in his home
directories on different machines as follows:

On hostX of clus1:

% cat ~userA1/.lsfhosts
clus1 userA
hostX userA1
clus2 userB

On any other machine in clus1:

% cat ~userA/.lsfhosts
clus2 userB
hostX userA1

On the clus2 machines:

% cat ~userB/.lsfhosts
clus1 userA
hostX userA1

6\VWHP�/HYHO�$FFRXQW�0DSSLQJ

An LSF administrator can set up system level account mapping in the lsb.users file.

For a job submitted as one user at the submission cluster to run as another user in a
remote execution cluster, the LSF Batch system requires that both clusters agree with
this account mapping. The submission cluster can propose a set of user mappings and
the execution cluster decides whether to accept these settings or not.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

0DQDJLQJ�/6)�0XOWL&OXVWHU�
The system level account mapping is defined in the “UserMap” section of the
lsb.users file. It contains multiple account mapping entries, where each entry
contains three fields:

• LOCAL: defines a list of local users

• REMOTE: defines a list of remote users in the form of username@clustername

• DIRECTION: two values can be used for this field: “export” and “import”. The
“export” keyword indicates that exported jobs of users defined in the LOCAL
column are running as the users in the REMOTE column. The “import” keyword
indicates that imported jobs belonging to remote users specified in the REMOTE
column are running as the users specified in the LOCAL column.

([DPSOH���

For userA on cluster clus1 to map to userB on cluster clus2, at clus1, the lsb.users file
can be set up as follows:

Begin UserMap
LOCAL REMOTE DIRECTION
.
userA userB@clus2 export
.
End UserMap

At clus2, the lsb.users file is set up as:

Begin UserMap
LOCAL REMOTE DIRECTION
.
userB userA@clus1 import
.
End UserMap

([DPSOH���

As another example, userA on clus1 wants to run as userB or userC on clus2. The clus1s
lsb.users file should be set up as follows:
���

�

Begin UserMap
LOCAL REMOTE DIRECTION
.
userA (userB@clus2 userC@clus2) export
.
End UserMap

At clus2, userA is allowed to run as both userB or userD:

Begin UserMap
LOCAL REMOTE DIRECTION
(userB userD) userA@clus1 import
End UserMap

Despite the fact that clus2 allows userA to also map to userD, clus1 does not propose
such a mapping and hence the common agreeable account mapping between clus1 and
clus2 for userA is userA@clus1 running as userB@clus2.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

0DQDJLQJ�/6)�0XOWL&OXVWHU�
���

�� /6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH

This chapter contains a detailed description of the contents of the LSF Base
configuration files. These include the installation file lsf.conf; the LIM
configuration files lsf.shared, lsf.cluster.cluster, lsf.task, and
lsf.task.cluster; and the optional LSF hosts file for additional host name
information.

7KH�lsf.conf�)LOH

Installation of and operation of LSF is controlled by the lsf.conf file. The lsf.conf
file is created during installation, and records all the settings chosen when LSF is
installed. This information is used by LSF daemons and commands to locate other
configuration files, executables, and network services.

lsf.conf contains LSF installation settings as well as some system-wide options. This
file is initially created by the lsfsetup utility during LSF installation and updated, if
necessary, when you upgrade to a new version. Many of the parameters are set during
the installation. This file can also be expanded to include LSF application specific
parameters.

/6%B&21)',5

LSF Batch configuration directories are installed under LSB_CONFDIR. Configuration
files for each LSF cluster are stored in a subdirectory of LSB_CONFDIR. This
subdirectory contains several files that define the LSF Batch user and host lists,
operation parameters, and batch queues.

All files and directories under LSB_CONFDIR must be readable from all hosts in the
cluster. LSB_CONFDIR/cluster/configdir must be owned by the LSF
administrator.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
Default: LSF_CONFDIR/lsbatch

You should not try to redefine this parameter once LSF has been installed. If you want
to move these directories to another location, you must make sure the permissions of
directories and files are set properly. See Appendix B, ‘LSF Directories’, beginning on
page 255 for details.

/6%B'(%8*

If this is defined, LSF Batch will run in single user mode. In this mode, no security
checking is performed, so the LSF Batch daemons should not run as root. When
LSB_DEBUG is defined, LSF Batch will not look in the system services database for
port numbers. Instead, it uses port number 40000 for mbatchd and port number 40001
for sbatchd unless LSB_MBD_PORT/LSB_SBD_PORT are defined in the file
lsf.conf. The valid values for LSB_DEBUG are 1 and 2. You should always choose 1
unless you are testing LSF Batch.

Default: undefined

/6%B0$,/352*

LSF Batch normally uses /usr/lib/sendmail as the mail transport agent to send
mail to users. If your site does not use sendmail, configure LSB_MAILPROG with the
name of a sendmail-compatible transport program. LSF Batch calls LSB_MAILPROG
with the following arguments:

LSB_MAILPROG -F "LSF Batch system" -f Manager@host dest_addr

The -F "LSF Batch System" argument sets the full name of the sender; the
-f Manager@host argument gives the return address for LSF Batch mail, which is the
LSF administrator’s mailbox. dest_addr is the destination address, generated by the
rules given for LSB_MAILTO above.

LSB_MAILPROG must read the body of the mail message from the standard input. The
end of the message is marked by end-of-file. Any program or shell script that accepts
the arguments and input and, delivers the mail correctly, can be used. LSB_MAILPROG
must be executable by any user.

If this parameter is modified, the LSF administrator must restart the sbatchd
daemons on all hosts to pick up the new value.
���

�

Default: /usr/lib/sendmail

/6%B0$,/72

LSF Batch sends electronic mail to users when their jobs complete or have errors, and
to the LSF administrator in the case of critical errors in the LSF Batch system. The
default is to send mail to the user who submitted the job, on the host where the daemon
is running; this assumes that your electronic mail system forwards messages to a
central mailbox.

The LSB_MAILTO parameter changes the mailing address used by LSF Batch.
LSB_MAILTO is a format string that is used to build the mailing address. The substring
!U, if found, is replaced with the user’s account name; the substring !H is replaced with
the name of the submission host. All other characters (including any other ‘!’) are
copied exactly. Common formats are:

!U
Mail is sent to the submitting user's account name on the local host.

!U@!H
Mail is sent to user@submission_hostname

!U@company_name.com
Mail is sent to user@company_name.com

If this parameter is modified, the LSF administrator must restart the sbatchd
daemons on all hosts to pick up the new value.

Default: !U

/6%B6+$5(',5

LSF Batch keeps job history and accounting log files for each cluster. These files are
necessary for correct operation of the system. Like the organization under
LSB_CONFDIR, there is one subdirectory for each cluster.

The LSB_SHAREDIR/cluster/logdir directory must be owned by the LSF
administrator.

Default: LSF_INDEP/work
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
Note
All files and directories under LSB_SHAREDIR must allow read and write access
from the LSF master host. See ‘Fault Tolerance’ on page 5 and ‘Resource and Resource
Requirements’ on page 8.

/6)B$)6B&(//1$0(

This must be defined to AFS cell name if the AFS file system is in use.

Default: undefined

/6%B/2&$/',5

This parameter needs to be defined if you want to use the duplicate event logging
feature. This parameter specifies a directory that is local to the default master lost, that
is, the first host configured in your lsf.cluster.<cluster> file. See ‘Duplicate Event
Logging’ on page 81 for more information about this topic.

/6)B$87+

This is an optional definition. By default, external user authentication is used, and
LSF_AUTH is defined to be eauth. External authentication is the only way to provide
security for clusters that contain Windows NT hosts. See ‘External Authentication’ on
page 11 for details.

If this parameter is changed, all the LSF daemons must be shut down and restarted by
running lsf_daemons start on each of the LSF server hosts so that the daemons
will use the new authentication method.

If LSF_AUTH is defined as ident, RES uses the RFC 1413 identification protocol to
verify the identity of the remote user. RES is also compatible with the older RFC 931
authentication protocol. The name, ident, must be registered in the system services
database. See ‘Resource Requirements’ on page 24 for instructions on registering service
names.

If LSF_AUTH is not defined, LSF uses privileged ports for user authentication. LSF
commands must be installed setuid to root to operate correctly. If the LSF commands
are installed in an NFS mounted shared file system, the file system must be mounted
with setuid execution allowed (that is, without the nosuid option). See the manual
page for mount for more details.
���

�

Windows NT does not have the concept of setuid binaries and does not restrict access
to privileged ports, so this method does not provide any security on Windows NT.

Default: eauth

/6)B($87+B.(<

This defines a key the eauth uses to encrypt and decrypt the user authentication data.
If you want to improve the security of your site by specifying a key, make sure it is at
least six characters long and uses only printable characters (like choosing a normal
UNIX password).

If this parameter is not defined, then eauth will use an internal key.

Default: undefined

/6)B%,1',5

Directory where all user commands are installed.

Default: LSF_MACHDEP/bin

/6)B&21)',5

The directory where all LIM configuration files are installed. These files are shared
throughout the system and should be readable from any host. This directory can
contain configuration files for more than one cluster.

Default: LSF_INDEP/conf

/6)B&5266B81,;B17

Optional. If this exists and has the value no, No, or NO, all cross-platform job
submissions and requests will fail.

This means that in a mixed UNIX/NT cluster, jobs submitted from a UNIX user
account on a UNIX host must be run on a UNIX host, and requests to stop or modify
the job must be also submitted from a UNIX user account. Windows NT jobs can only
be started, stopped, or modified by Windows NT user accounts on Windows NT hosts.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
If this parameter is undefined, or defined as any other value, mixed UNIX/NT clusters
operate properly, and only the user name is used for authentication of the user account.

Default: undefined

/6)B(&+.317',5

Optional. Specifies the directory where the echkpnt and erestart executable files
are installed, if they are not in the default location LSF_SERVERDIR.

Default: undefined

/6)B(19',5

LSF normally installs the lsf.conf file in the /etc directory. The lsf.conf file is
installed by creating a shared copy in LSF_SERVERDIR and adding a symbolic link
from /etc/lsf.conf to the shared copy. If LSF_ENVDIR is set, the symbolic link is
installed in LSF_ENVDIR/lsf.conf.

Default: /etc

/6)B,1&/8'(',5

Directory under which the LSF API header file <lsf/lsf.h> is installed.

Default: LSF_INDEP/include

/6)B,1'(3

Specifies the default top-level directory for all host-type independent LSF files. This
includes manual pages, configuration files, working directories, and examples. For
example, defining LSF_INDEP as /usr/local/lsf places manual pages in /usr/
local/lsf/man, configuration files in /usr/local/lsf/conf, and so on.

Default: /usr/local/lsf
���

�

/6)B/,%',5

Directory where the LSF application programming interface library liblsf.a is
installed.

Default: LSF_MACHDEP/lib

/6)B/,&(16(B),/(

Either the full path name of the FLEXlm license file used by LSF, or the host name of
the license server host machine and port number of the license service (format:
port_number@host_name). If this variable is not defined, on UNIX LIM looks for the
license in /usr/local/flexlm/licenses/license.dat. On NT, LIM looks for
license in C:\flexlm\licensed.

Default: LSF_CONFDIR/license.dat

/6)B/,0B'(%8*

If LSF_LIM_DEBUG is defined, the Load Information Manager (LIM) will operate in
single user mode. No security checking is performed, so LIM should not run as root.
LIM will not look in the services database for the LIM service port number. Instead, it
uses port number 36000 unless LSF_LIM_PORT has been defined. The valid values for
LSF_LIM_DEBUG are 1 and 2. You should always choose 1 unless you are testing LSF.

Default: undefined

/6)B/,0B3257��/6)B5(6B3257��/6%B0%'B3257��/6%B6%'B3257

Internet port numbers to use for communication with the LSF daemons. The port
numbers are normally obtained by looking up the LSF service names in the /etc/
services file or the NIS (UNIX). If it is not possible to modify the service database,
these variables can be defined to set the port numbers.

With careful use of these settings along with the LSF_ENVDIR and PATH environment
variables, it is possible to run two versions of the LSF software on a host, selecting
between the versions by setting the PATH environment variable to include the correct
version of the commands and the LSF_ENVDIR environment variable to point to the
directory containing the appropriate lsf.conf file.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
Default: get port numbers from services database on UNIX. On NT, these parameters
are mandatory.

/6)B/2*',5

This is an optional definition on UNIX and a mandatory parameter on NT.

Error messages from all servers are logged into files in this directory. If a server is
unable to write in this directory, then the error logs are created in /tmp on UNIX and
C:\temp on NT.

If LSF_LOGDIR is not defined, then syslog is used to log everything to the
system log using the LOG_DAEMON facility. The syslog facility is available
by default on most UNIX systems. The /etc/syslog.conf file controls
the way messages are logged, and the files they are logged to. See the
manual pages for the syslogd daemon and the syslog function for more
information.

Default: log messages go to syslog

/6)B/2*B0$6.

The message log level for LSF daemons. On UNIX, this is similar to syslog. All
messages logged at the specified level or higher are recorded; lower level messages are
discarded. The log levels in order from highest to lowest are:

• LOG_ALERT

• LOG_SALERT

• LOG_EMERG

• LOG_ERR

• LOG_CRIT

• LOG_WARNING

• LOG_NOTICE

UNIX
���

�

• LOG_INFO

• LOG_DEBUG

The most important LSF log messages are at the LOG_ERR or LOG_WARNING level.
Messages at the LOG_INFO and LOG_DEBUG level are only useful for debugging.

Note that although message log level implements similar functionalities to UNIX
syslog, there is no dependency on UNIX syslog. It works even if messages are being
logged to files instead of syslog.

Default: LOG_WARNING

/6)B0$&+'(3

Specifies the directory where host type dependent files are installed. In clusters with a
single host type, LSF_MACHDEP is usually the same as LSF_INDEP. The machine
dependent files are the user programs, daemons, and libraries. You should not need to
modify this parameter.

Default: /usr/local/lsf

/6)B0$1',5

Directory under which all manual pages are installed. The manual pages
are placed in the man1, man3, man5 and man8 subdirectories of the
LSF_MANDIR directory. This is created by the LSF installation process and
you should not need to modify this parameter.

Default: LSF_INDEP/man

Note
Manual pages are installed in a format suitable for BSD style man
commands.

/6)B0,6&

Directory where miscellaneous machine independent files such as LSF example source
programs and scripts are installed.

UNIX
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
Default: LSF_CONFDIR/misc

/6)B5(6B$&&7

If defined, RES will log task information by default (see lsf.acct(5)). If this
parameter is not defined, the LSF administrator must use the lsadmin command (see
lsadmin(8)) to turn task logging on after the RES has started up. A CPU time (in msec)
can be specified for the value for this parameter; only tasks that have consumed more
than the specified CPU time will be logged. If it is defined as LSF_RES_ACCT=0, all
tasks will be logged.

Default: undefined

/6)B5(6B$&&7',5

The directory where the RES task log file is stored. If LSF_RES_ACCTDIR is not
defined, log file is stored in the /tmp directory.

Default: /tmp on UNIX. C:\temp on NT.

/6)B5(6B'(%8*

If LSF_RES_DEBUG is defined, the Remote Execution Server (RES) will operate in
single user mode. No security checking is performed, so RES should not run as root.
RES will not look in the services database for the RES service port number. Instead, it
uses port number 36002 unless LSF_RES_PORT has been defined. The valid values for
LSF_RES_DEBUG are 1 and 2. You should always choose 1 unless you are testing RES.

Default: undefined

/6)B5227B5(;

This is an optional definition.

If LSF_ROOT_REX is defined, RES accepts requests from the superuser
(root) on remote hosts, subject to identification checking. If
LSF_ROOT_REX is undefined, remote execution requests from user root are
refused. Sites that have separate root accounts on different hosts within the
cluster should not define LSF_ROOT_REX. Otherwise, this setting should

UNIX
���

�

be based on local security policies. If the value of this parameter is defined
to ‘all’, then root remote execution across the cluster is enabled. This
applies to LSF MultiCluster only. Setting LSF_ROOT_REX to any other
value only enables root remote execution within the local cluster.

Default: undefined. Root execution is not allowed.

/6)B6(59(5',5

Directory where all server binaries are installed. These include lim, res, nios,
sbatchd, mbatchd, and eeventd (for LSF JobScheduler only). If you use elim,
eauth, eexec, esub, etc, they should also be installed in this directory.

Default: LSF_MACHDEP/etc

/6)B6(59(5B+2676

This defines one or more LSF server hosts that the application should contact to find a
Load Information Manager (LIM). This is used on client hosts where no LIM is running
on the local host. The LSF server hosts are hosts that run LSF daemons and provide
loading-sharing services. Client hosts are hosts that only run LSF commands or
applications but do not provide services to any hosts.

If LSF_SERVER_HOSTS is not defined, the application tries to contact the LIM on the
local host. See ‘Associating Resources with Hosts’ on page 60 for more details about server
and client hosts.

The host names in LSF_SERVER_HOSTS must be enclosed in quotes and separated by
white space; for example:

LSF_SERVER_HOSTS="hostA hostD hostB"

Default: undefined

/6)B675,3B'20$,1

This is an optional definition.

If all the hosts in your cluster can be reached using short host names, you can configure
LSF to use the short host names by specifying the portion of the domain name to
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
remove. If your hosts are in more than one domain, or have more than one domain
name, you can specify more than one domain suffix to remove, separated by a colon ‘:’.

For example, given this definition of LSF_STRIP_DOMAIN:

LSF_STRIP_DOMAIN=.foo.com:.bar.com

LSF accepts hostA, hostA.foo.com, and hostA.bar.com as names for host hostA, and uses
the name hostA in all output. The leading period ‘.’ is required.

Default: undefined

/6)B86(B+267(48,9

This is an optional definition.

If LSF_USE_HOSTEQUIV is defined, RES and mbatchd call the
ruserok(3) function to decide if a user is allowed to run remote jobs. If
LSF_USE_HOSTEQUIV is not defined, all normal users in the cluster can
execute remote jobs on any host. If LSF_ROOT_REX is set, root can also
execute remote jobs with the same permission test as for normal users.

Default: undefined

;/6)B$33',5

The directory where X application default files for LSF products are
installed. The LSF commands that use X look in this directory to find the
application defaults. Users do not need to set environment variables to use
the LSF X applications. The application default files are platform-
independent.

Default: LSF_INDEP/misc

;/6)B8,'',5

The directory where Motif User Interface Definition files are stored. These
files are platform-specific.

UNIX

UNIX

UNIX
���

�

Default: LSF_LIBDIR/uid

/6)B5(6B5/,0,7B81/,0

By default, the RES sets the hard limits for a remote task to be the same as the hard
limits of the local process. This parameter specifies those hard limits which are to be
set to unlimited, instead of inheriting those of the local process. Valid values are cpu,
fsize, data, stack, core, and vmem, for cpu, file size, data size, stack, core size, and
virtual memory limits, respectively.

For example:

LSF_RES_RLIMIT_UNLIM="cpu core stack"

will set the cpu, core size, and stack hard limits to be unlimited for all remote tasks.

Default: undefined

Note
The LSF_RES_RLIMIT_UNLIM parameter applies to LSF Base only.

7KH�lsf.shared�)LOH

The lsf.shared file contains definitions that are used by all load sharing clusters.
This includes lists of cluster names, host types, host models, the special resources
available, and external load indices.

&OXVWHUV

The mandatory Cluster section defines all cluster names recognized by the LSF
system, with one line for each cluster.

The ClusterName keyword is mandatory. All cluster names referenced anywhere in
the LSF system must be defined here. The file names of cluster-specific configuration
files must end with the associated cluster name.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
Begin Cluster
ClusterName
cluster1
cluster2
End Cluster

+RVW�7\SHV

The mandatory HostType section lists the valid host type names in the cluster. Each
host is assigned a host type in the lsf.cluster.cluster file. All hosts that can run
the same binary programs should have the same host type, even if they have different
models of processor. LSF uses the host type as a default requirement for task
placement. Unless specified otherwise, jobs are always run on hosts of the same type.

The TYPENAME keyword is mandatory. Host types are usually based on a combination
of the hardware name and operating system. For example, a HP-PA system runs the
HP-UX operating system, so you could assign the host type HPPA. If your site already
has a system for naming host types, you can use the same names for LSF.

Begin HostType
TYPENAME
SUN41
SOLSPARC
ALPHA
HPPA
NTX86
End HostType

+RVW�0RGHOV

The mandatory HostModel section lists the various models of machines and gives the
relative CPU speed for each model. LSF uses the relative CPU speed to normalize the
CPU load indices so that jobs are more likely to be sent to faster hosts. The MODELNAME
and CPUFACTOR keywords are mandatory.

Generally, you need to identify the distinct host types in your system, such as MIPS
and SPARC first, and then the machine models within each, such as SparcIPC, Sparc1,
Sparc2, and Sparc10.
���

�

Though it is not required, you would typically assign a CPU factor of 1.0 to the slowest
machine model in your system, and higher numbers for the others. For example, for a
machine model that executes at twice the speed of your slowest model, a factor of 2.0
should be assigned.

Begin HostModel
MODELNAME CPUFACTOR
SparcIPC 1.0
Sparc10 2.0
End HostModel

The CPU factor affects the calculation of job execution time limits and accounting.
Using large values for the CPU factor can cause confusing results when CPU time
limits or accounting are used. See ‘Resource Limits’ on page 217 for more information.

5HVRXUFHV

The section Resource is optional. This section is used to define resource names. The
following keywords are supported:

RESOURCENAME

This parameter is mandatory for each resource to be configured. A resource name is an
arbitrary character string, except the following reserved names:

r15s
The 15-second exponentially averaged CPU run queue length.

r1m
The 1-minute exponentially averaged CPU run queue length.

r15m
The 15-minute exponentially averaged CPU run queue length.

cpu
Alias for r1m.

ut
The CPU utilization, exponentially averaged over the last minute, between 0
and 1.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
pg
The memory paging rate, exponentially averaged over the last minute, in
pages per second.

io
The disk I/O rate exponentially averaged over the last minute, in KBytes per
second.

ls
The number of current login users.

logins
Alias for ls.

it
The idle time of the host (keyboard not touched on all logged in sessions), in
minutes.

idle
Alias for it.

tmp
The amount of free space in /tmp, in MBytes.

swp
The amount of currently available swap space, in MBytes.

swap
Alias for swp.

mem
The amount of currently available memory, in MBytes.

ncpus
The number of CPUs on the host.

ndisks
The number of local disks on the host.
���

�

maxmem
The maximum physical memory, in MBytes.

maxswp
The maximum swap space, in MBytes.

maxtmp
The maximum space in the disk partition containing the /tmp directory, in
MBytes.

cpuf
The processor CPU factor.

type
The host type.

model
The host model.

status
The host status.

A resource name cannot begin with a number, and cannot contain any of the following
characters:
: . () [+ - * / ! & | < > @ =

TYPE
The TYPE is either boolean, numeric, or string. A boolean resource has a value
of 1 on hosts which have that resource, and 0 otherwise. If TYPE is not given,
the default type is boolean. Examples of boolean resource names include
sparc (architecture), sysv (System V Unix), fs (file server), cs (compute
server), and solaris (operating system).

INTERVAL
This parameter defines the time interval (in seconds) at which the resource is
sampled by the external LIM. This keyword applies to dynamic resources only.
A dynamic resource changes its value over time. An ELIM needs to be
configured to sample and report this value to the LIM. If the resource has type
numeric and has INTERVAL defined, then this resource becomes an external
load index. This way of defining an external load index obsoletes the
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
NewIndex section in the lsf.shared file. If INTERVAL is not given, the
resource is considered static.

INCREASING
This parameter applies to numeric resources only. If a larger value means a
greater load, then INCREASING should be defined as ‘Y’, otherwise ‘N’.

DESCRIPTION
This is a brief description of the resource. The information defined here will be
returned by the ls_info() API call or printed out by the lsinfo command
as an explanation of the meaning of the resource.

RELEASE
This parameter controls whether a shared resource is released when a job is
suspended. RELEASE applies to numeric resources only, such as floating
licenses. When a job using a shared resource is suspended the resource is held
or released by the job depending on the configuration of this parameter.

Specify N to hold the resource.

Specify Y to release the resource.

Default: Y

7KH lsf.cluster.cluster)LOH

This is the load-sharing cluster configuration file. There is one such file for each load-
sharing cluster in the system. The cluster suffix must agree with the name defined in
the Cluster section of the lsf.shared file.

3DUDPHWHUV

The Parameters section is optional. This section contains miscellaneous parameters
for the LIM.
���

�

352'8&76

The PRODUCTS line specifies which LSF product(s) will be enabled in the cluster. The
PRODUCTS line can specify any combination of the strings ‘LSF_Base’, ‘LSF_Batch’,
‘LSF_JobScheduler’, ‘LSF_MultiCluster’, and ‘LSF_Analyzer’ to enable the
operation of LSF Base, LSF Batch, LSF JobScheduler, LSF MultiCluster, and LSF
Analyzer, respectively. If any of ‘LSF_Batch’, ‘LSF_JobScheduler’, or
‘LSF_MultiCluster’ are specified then ‘LSF_Base’ is automatically enabled as
well. Specifying the PRODUCTS line enables the feature for all hosts in the cluster.
Individual hosts can be configured to run as LSF Batch servers or LSF JobScheduler
servers within the same cluster. LSF MultiCluster is either enabled or disabled for
multicluster operation for the entire cluster.

The PRODUCTS line is created automatically by the installation program lsfsetup.
For example:

Begin Parameters
PRODUCTS=LSF_Base LSF_Batch
End Parameters

If the PRODUCTS line is not specified, the default is to enable the operation of
‘LSF_Base’ and ‘LSF_Batch’.

Note
The features defined by the PRODUCTS line must match the license file used to serve
the cluster. A host will be unlicensed if the license is unavailable for the component it
was configured to run. For example, if you configure a cluster to run LSF JobScheduler
on all hosts, and the license file does not contain the LSF JobScheduler feature, then the
hosts will be unlicensed, even if there are licenses for LSF Base or LSF Batch.

Default: LSF_Base LSF_Batch

(/,0$5*6

The ELIMARGS parameter specifies any necessary command line arguments for the
external LIM. This parameter is ignored if no external load indices are configured.

Default: none
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
(;,17(59$/

The time interval (in seconds) at which the LIM daemons exchange load information.
On extremely busy hosts or networks, load may interfere with the periodic
communication between LIM daemons. Setting EXINTERVAL to a longer interval can
reduce network load and slightly improve reliability, at the cost of slower reaction to
dynamic load changes.

Default: 15 seconds

(/,0B32//B,17(59$/

The time interval in seconds in which the LIM daemon samples load information. This
parameter only needs to be set if an ELIM is being used to report information more
frequently than every 5 seconds.

Default: 5 seconds

+267B,1$&7,9,7<B/,0,7

An integer reflecting a multiple of EXINTERVAL. This parameter controls the
maximum time a slave LIM will take to send its load information to the master LIM as
well as the frequency at which the master LIM will send a heartbeat message to its
slaves. A slave LIM can send its load information any time from EXINTERVAL to
(HOST_INACTIVITY_LIMIT-2)*EXINTERVAL seconds. A master LIM will send a
master announce to each host at least every EXINTERVAL*HOST_INACTIVITY_LIMIT
seconds.

Default: 5

0$67(5B,1$&7,9,7<B/,0,7

An integer reflecting a multiple of EXINTERVAL. A slave will attempt to become
master if it does not hear from the previous master after (HOST_INACTIVITY_LIMIT
+hostNo*MASTER_INACTIVITY_LIMIT)*EXINTERVAL seconds where hostNo is the
position of the host in the lsf.cluster.cluster file.

Default: 2
���

�

352%(B7,0(287

Before taking over as the master, a slave LIM will try to connect to the last known
master via TCP. This parameter specifies the time-out in seconds to be used for the
connect(2) system call.

Default: 2 seconds

5(75<B/,0,7

An integer reflecting a multiple of EXINTERVAL. This parameter controls the number
of retries a master (slave) LIM makes before assuming the slave (master) is unavailable.
If the master does not hear from a slave for HOST_INACTIVITY_LIMIT exchange
intervals, it will actively poll the slave for RETRY_LIMIT exchange intervals before it
will declare the slave as unavailable. If a slave does not hear from the master for
HOST_INACTIVITY_LIMIT exchange intervals, it will actively poll the master for
RETRY_LIMIT intervals before assuming the master is down.

Default: 2

/6)�$GPLQLVWUDWRUV

The ClusterAdmins section defines the LSF administrator(s) for this cluster. Both
UNIX user and group names may be specified with the ADMINISTRATORS keyword.
The LIM will expand the definition of a group name using the getgrnam(3) call. The
first administrator of the expanded list is considered the primary LSF administrator.
The primary administrator is the owner of the LSF configuration files, as well as the
working files under LSB_SHAREDIR/cluster. If the primary administrator is
changed, make sure the owner of the configuration files and the files under
LSB_SHAREDIR/cluster are changed as well. All LSF administrators have the same
authority to perform actions on LSF daemons, jobs, queues, or hosts in the system.

For backwards compatibility, ClusterManager and Manager are synonyms for
ClusterAdmins and ADMINISTRATOR respectively. It is possible to have both
sections present in the same lsf.cluster.cluster file to allow daemons from
different LSF versions to share the same file.

If this section is not present, the default LSF administrator is root. For flexibility, each
cluster may have its own LSF administrator(s), identified by a user name, although the
same administrator(s) can be responsible for several clusters.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
The ADMINISTRATOR parameter is normally set during the installation procedure.

Use the -l option of the lsclusters(1) command to display all the administrators
within a cluster.

The following gives an example of a cluster with three LSF administrators. The user
listed first, user2, is the primary administrator.

Begin ClusterAdmins
ADMINISTRATORS = user2 lsfgrp user7
End ClusterAdmins

+RVWV

The Host section is the last section in lsf.cluster.cluster and is the only
required section. It lists all the hosts in the cluster and gives configuration information
for each host.

The order in which the hosts are listed in this section is important. The LIM on the first
host listed becomes the master LIM if this host is up; otherwise, that on the second
becomes the master if its host is up, and so on.

Since the master LIM makes all placement decisions for the cluster, you want it on a
fast machine. Also, to avoid the delays involved in switching masters if the first
machine goes down, you want the master to be on a reliable machine. It is desirable to
arrange the list such that the first few hosts in the list are always in the same subnet.
This avoids a situation where the second host takes over as master when there are
communication problems between subnets.

Configuration information is of two types. Some fields in a host entry simply describe
the machine and its configuration. Other fields set thresholds for various resources.
Both types are listed below.

'HVFULSWLYH�)LHOGV

The HOSTNAME, model, type, and RESOURCES fields must be defined in the Host
section. The server, nd, RUNWINDOW and REXPRI fields are optional.
���

�

HOSTNAME
The official name of the host as returned by hostname(1). Must be listed in
lsf.shared as belonging to this cluster.

model
Host model. Must be one of those defined in the lsf.shared file. This
determines the CPU speed scaling factor applied in load and placement
calculations.

type
A host type as defined in the HostType section of lsf.shared. The strings
used for host types are decided by the system administrator. For example,
SPARC, DEC, or HPPA. The host type is used to identify binary-compatible
hosts.

The host type is used as the default resource requirement. That is, if no
resource requirement is specified in a placement request then the task is run
on a host of the same type as the sending host.

Often one host type can be used for many machine models. For example, the
host type name SUN41 might be used for any computer with a SPARC
processor running SunOS 4.1. This would include many Sun models and quite
a few from other vendors as well.

server
1 if the host can receive jobs from other hosts, 0 otherwise. If server is set to
0, the host is an LSF client. Client hosts do not run the LSF daemons. Client
hosts can submit interactive and batch jobs to an LSF cluster, but cannot
execute jobs sent from other hosts. If this field is not defined, then the default
is 1.

nd
The number of local disks. This corresponds to the ndisks static resource. On
most host types, LSF automatically determines the number of disks, and the
nd parameter is ignored.

nd should only count local disks with file systems on them. Do not count either
disks used only for swapping or disks mounted with NFS.

Default: the number of disks determined by the LIM, or 1 if the LIM cannot
determine this
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
RESOURCES
Boolean resources available on this host. The resource names are strings
defined in the Resource section of the file lsf.shared. You may list any
number of resources, enclosed in parentheses and separated by blanks or tabs.
For example, (fs frame hpux).

RUNWINDOW
Dispatch window during which the LIM recommends this host for task
execution. When the host is not available for remote execution, the host status
is lockW (locked by run window). LIM does not schedule interactive tasks on
hosts locked by dispatch windows. Note that LSF Batch uses its own (optional)
host dispatch windows to control batch job processing on batch server hosts.

A dispatch window consists of one or more time windows. See ‘How LSF Batch
Schedules Jobs’ on page 19 for a description of the format of time window
specifications.

Default: always accept remote jobs

REXPRI
The default execution priority for interactive remote jobs run
under the RES. Range: -20 to 20. REXPRI corresponds to the BSD
style nice value used for remote jobs. For hosts with System V style
nice values with the range 0 - 39, a REXPRI of -20 corresponds to a
nice value of 0 and +20 corresponds to 39. Higher values of
REXPRI correspond to lower execution priority; -20 gives the
highest priority, 0 is the default priority for login sessions, and +20
is the lowest priority.

Default: 0

7KUHVKROG�)LHOGV

The LIM uses these thresholds in determining whether to place remote jobs on a host.
If one or more LSF load indices exceeds the corresponding threshold (too many users,
not enough swap space, etc.), then the host is regarded as busy and LIM will not
recommend jobs to that host.

Note
The CPU run queue length threshold values (r15s, r1m, and r15m) are taken as
effective queue lengths as reported by lsload -E.

UNIX
���

�

All of these fields are optional; you only need to configure thresholds for load indices
you wish to use for determining whether hosts are busy. Fields that are not configured
are not considered when determining host status.

Thresholds can be set for any load index supported internally by the LIM, and for any
external load index (see ‘Load Thresholds’ on page 216).

This example Host section contains descriptive and threshold information for two
hosts.

Begin Host
HOSTNAME model type server r1m pg tmp RESOURCES RUNWIN
DOW
hostA SparcIPC Sparc 1 3.5 15 0 (sunos) ()
hostD Sparc10 Sparc 1 3.5 15 0 (sunos frame) (18:00
-08:00)
End Host

5HVRXUFH�0DS

ResourceMap section is needed when you define shared resources in your cluster.
This section specifies the mapping between shared resources and their sharing hosts.
When you define resources in the Resources section of lsf.shared file, there is
no distinction between a shared and non-shared resource. By default, all resources are
not shared and are local to each host. By defining ResourceMap section, you can
define resources that are shared by all hosts in the cluster, or resources that are shared
by only some of the hosts in the cluster.

This section must appear after the Host section of the lsf.cluster.cluster file
because it has a dependency on host names defined in the Host section. The following
parameters must be defined in the ResourceMap section:

RESOURCENAME
The name of the resource. This resource name must be defined in the
Resource section of the lsf.shared file.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
LOCATION
This defines the hosts that share the resource. For a static resource, the value
must be defined here as well. The syntax is:

(value@[instance] ...) ...

You must not define a value for a dynamic resource. instance is a list of host
names that share an instance of the resource. The reserved words, all,
others, and default can be specified for the instance:

all
Indicates that there is only one instance of the resource in the whole
cluster, and that this resource is shared by all of the hosts.

others
Indicates that the rest of the server hosts not explicitly listed in the
LOCATION field comprise one instance of the resource.

For example,

2@[apple] 4@[others]

Indicates that there are 2 units of the resource on apple, and 4 units of
the resource shared by all other hosts.

default
Indicates an instance of a resource on each host in the cluster. This
specifies a special case where the resource is in effect not shared and
is local to every host. default means at each host. Normally you
should not need to use default because by default all resources are
local to each host. You might want to use ResourceMap for a non-
shared static resource if you need to specify different values for the
resource on different hosts.

The ResourceMap section may be specified as demonstrated in the following
example:

Begin ResourceMap
RESOURCENAME LOCATION
verilog [all]
���

�

local ([apple orange] [others])
End ResourceMap

The resources, "verilog" and "synopsys" must already have been defined in the
RESOURCE section of the lsf.shared file. "verilog" is a static numeric resource
shared by all hosts. The value for verilog is 5. "local" is a numeric shared resource
that contains two instances in the cluster. The first instance is shared by two machines,
apple and orange. The second instance is shared by all other hosts.

Resources defined in the ResourceMap section can be viewed by "-s" option of the
lshosts (for static resource) and lsload (for dynamic resource) commands.

7KH lsf.task DQG lsf.task.cluster)LOHV

Users should not have to specify a resource requirement each time they submit a job.
LSF supports the concept of a task list.

A task list is a list maintained by LSF that keeps track of the default resource
requirements for different applications. The term task refers to an application name.
With a task list defined, LSF automatically supplies the resource requirement of the job
whenever users submit a job unless one is explicitly specified together with the job
submission.

LSF takes the job’s command name as the task name and uses that name to find the
matching resource requirement for the job from the task list. If a task does not have an
entry in the task list, then LSF assumes the default resource requirement, that is a host
that has the same host type as the submission host will be chosen to run the job.

LSF’s task list can be configured at three levels: a system-wide task list that applies to
all clusters and all users, a cluster-wide task list that applies to all users in the same
cluster, and a user task list that applies only to the user. The system-wide task list and
the cluster-wide task list are configured by the lsf.task and lsf.task.cluster
files and are only modified by the cluster administrator. The user-specific task list is
maintained in the .lsftask file in the user’s home directory. Users use the lsrtasks
command to manipulate his/her own task list.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
LSF combines the system-wide, cluster-wide, and user-specific task lists for each user’s
view of the task list. In cases of conflicts, such as different resource requirements
specified for the same task name in different lists, the cluster-wide list overrides
system-wide list, and user-specific list overrides both.

Each task list file contains a RemoteTasks section that maps task names to resource
requirements, one task per line. Each line in the section is an entry consisting of a task
name and a resource requirement string separated by a slash ‘/’. A plus sign ‘+’ or a
minus sign ‘-’ can optionally precede each entry. If no ‘+’ or ‘-’ is specified, then ‘+’ is
assumed. A ‘+’ before a task name means adding a new entry (if non-existent) or
replacing an entry (if already existent) in the task list. A ‘-’ before a task name means
removing an entry from the application’s task lists if it was already created by reading
higher level task files.

Below is an example of a task list file:

Begin RemoteTasks
+ "newjob/mem>25"
+ "verilog/select[type==any && swp>100]"
+ "f77/type==any"
+ "compressdir/fs"
End RemoteTasks

7KH�hosts�)LOH

If your LSF clusters include hosts that have more than one interface and are configured
with more than one official host name, you must either modify the host name
configuration or create a private hosts file for LSF to use. The LSF hosts file is stored in
LSF_CONFDIR. The format of LSF_CONFDIR/hosts is the same as for the /etc/
hosts file.

For every host that has more than one official name, you must duplicate the hosts
database information except that all entries for the host should use the same official
name. Configure all the other names for the host as aliases so that people can still refer
to the host by any name. For example, if your /etc/hosts file contains
���

�

AA.AA.AA.AA host-AA host # first interface
BB.BB.BB.BB host-BB # second interface

then the LSF_CONFDIR/hosts file should contain:

AA.AA.AA.AA host host-AA # first interface
BB.BB.BB.BB host host-BB # second interface

The LSF hosts file should only contain entries for host with more than one official
name. All other hosts names and addresses are resolved using the default method for
your hosts. See ‘Hosts, Machines, and Computers’ on page 3 for a detailed discussion of
official host names.

7KH lsf.sudoers)LOH

The format of this file is very similar to that of the lsf.conf file (see ‘The lsf.conf File’
on page 161). Each line of the file is a NAME=VALUE statement, where NAME describes an
authorized operation and VALUE is a single string or multiple strings enclosed in
quotes. On UNIX, lines starting with ‘#' are comments and are ignored. On UNIX, the
lsf.sudoers file is optional.

On Windows NT, except for the LSF_LOCAL_ADMIN_GROUP variable, the parameters
described in the lsf.sudoers file are described in a Registry key located at
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LSF
Service\lsf.sudoers.

The following variables are defined:

LSF_LOCAL_ADMIN_GROUP
Windows NT only. This is a Registry key that defines the local LSF
administrators group. Members of this user group are assigned privileges that
allow them to start and stop the LSF services.

The location of this value in the Registry is:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\LSF Service

Default value: LSF Local Admins
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
LSF_STARTUP_USERS
UNIX only. This variable is equivalent to the local LSF administrators group
in Windows NT, and it enables a list of specified users to start LSF daemons
using the LSF administration commands lsadmin and badmin. By default,
root is the only user who can start up the LSF daemons as root, and lsadmin
and badmin must be installed as setuid root programs.

LSF_STARTUP_USERS="user1 user2"
This allows listed users to perform the startup operations. If this list
contains only one user, quotes are not necessary.

LSF_STARTUP_USERS = all_admins
This allows all the LSF administrators configured in the
lsf.cluster.cluster file to start up LSF daemons using the
lsadmin and badmin commands.

CAUTION!
Defining LSF_STARTUP_USERS as all_admins incurs some security risk
because administrators can be configured by a primary LSF administrator
who is not root. You should explicitly list the login names of all authorized
administrators here so that you have full control of who can start daemons
as root.

LSF_STARTUP_PATH
The absolute pathname of the directory where the server binaries, namely
lim, res, sbatchd, are installed. This is normally LSF_SERVERDIR as
defined in your lsf.conf file. LSF will allow the specified administrators
(see LSF_STARTUP_USERS or LSF_LOCAL_ADMIN_GROUP) to start the
daemons installed in the LSF_STARTUP_PATH directory.

On UNIX, both LSF_STARTUP_USERS and LSF_STARTUP_PATH must be
defined for this feature to work.

LSB_PRE_POST_EXEC_USER
This parameter defines the authorized user for the LSF Batch queue level pre-
execution and post-execution commands. These commands can be configured
at the queue level by the LSF administrator. If LSB_PRE_POST_EXEC_USER is
defined, the queue level pre-execution and post-execution commands will be
run as the user defined. If this parameter is not defined, the commands will be
���

�

run as the user who submitted the job. In particular, you can define this
variable if you need to run commands as root on UNIX.

See ‘Pre- and Post-execution Commands’ on page 36 for details of pre-execution
and post-execution.

You can only define a single username in this parameter.

LSF_EAUTH_USER
This defines the username to run the external authentication executable,
eauth. If this is parameter is not defined, then eauth will be run as the
primary LSF administrator. See ‘External Authentication’ on page 11 for an
explanation of external authentication.

LSF_EAUTH_KEY
This defines a key the eauth uses to encrypt and decrypt the user
authentication data. If this parameter is not defined, then eauth will encrypt
and decrypt authentication data using an internal key.

This parameter gives the user site a chance to improve their security. The rule
of choosing the key is same as choosing the password. If you want to change
the key, you should modify the lsf.sudoers file on every host. For the hosts to
work together, they must all use the same key.

See ‘External Authentication’ on page 11 for an explanation of external
authentication.

LSF_EEXEC_USER
This defines the user name to run the external execution command, eexec. If
this parameter is not defined, then eexec will be run as the user who
submitted the job. See ‘External Submission and Execution Executables’ on page 42
for an explanation of external execution.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DVH�&RQILJXUDWLRQ�5HIHUHQFH�
���

�� /6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH

This chapter describes the LSF Batch configuration files lsb.params, lsb.users,
lsb.hosts, and lsb.queues. These files use the same horizontal and vertical
section structure as the LIM configuration files (see ‘Configuration File Formats’ on
page 52). All LSF Batch configuration files are found in the LSB_CONFDIR/cluster/
configdir directory.

7KH�lsb.params�)LOH

The lsb.params file defines general parameters used by the LSF Batch cluster. This
file contains only one section.

Most of the parameters that can be defined in the lsb.params file control timing
within the LSF Batch system. The default settings provide good throughput for long
running batch jobs while adding a minimum of processing overhead in the batch
daemons.

3DUDPHWHUV

This section and all the keywords in this section are optional. If keywords are not
present, LSF Batch assumes default values for the corresponding keywords. The valid
keywords for this section are:

DEFAULT_QUEUE = queue...
DEFAULT_QUEUE lists the names of LSF Batch queues defined in the
lsb.queues file. When a user submits a job to the LSF Batch system without
explicitly specifying a queue and the user’s environment variable
LSB_DEFAULTQUEUE is not set, LSF Batch queues the job in the first default
queue listed that satisfies the job’s specifications and other restrictions.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
If this keyword is not present or no valid value is given, then LSF Batch
automatically creates a default queue named default with all the default
parameters (see ‘The lsb.queues File’ on page 208).

DEFAULT_HOST_SPEC = host_spec
host_spec must be a host name defined in the lsf.cluster.cluster file,
or a host model defined in the lsf.shared file.

The CPU time limit defined by the CPULIMIT parameter in the lsb.queues
file or by the user through the -c cpu_limit option of the bsub command is
interpreted as the maximum number of minutes of CPU time that a job may
run on a host of the default specification. When a job is dispatched to a host for
execution, the CPU time limit is then normalized according to the execution
host’s CPU factor.

If DEFAULT_HOST_SPEC is defined in both the lsb.params file and the
lsb.queues file for an individual queue, the value specified for the queue
overrides the global value. If a user explicitly gives a host specification with
the CPU limit when submitting a job, the user specified host or host model
overrides the values defined in both the lsb.params and the lsb.queues
files.

Default: the fastest batch server host in the cluster.

DEFAULT_PROJECT = proj_name
The default project name for jobs. When a user submits a job without
specifying any project name, and the user’s environment variable
LSB_DEFAULTPROJECT is not set, LSF Batch automatically assigns the job to
this default project name. On IRIX 6, the project name must be one of the
projects listed in the /etc/project(4) file. On all other platforms, the project
name is a string used for accounting purposes.

Default: If this parameter is not present, LSF Batch uses default as the
default project name.

MBD_SLEEP_TIME = integer
The LSF Batch job dispatching interval. It determines how often the LSF Batch
system tries to dispatch pending batch jobs.

Default: 60 (seconds).

SBD_SLEEP_TIME = integer
The LSF Batch job checking interval. It determines how often the LSF Batch
���

�

system checks the load conditions of each host to decide whether jobs on the
host must be suspended or resumed.

Default: 30 (seconds).

JOB_ACCEPT_INTERVAL = integer
The number of MBD_SLEEP_TIME periods to wait after dispatching a job to a
host, before dispatching a second job to the same host. If
JOB_ACCEPT_INTERVAL is zero, a host may accept more than one job in each
job dispatching interval (MBD_SLEEP_TIME).

Default: 1.

MAX_SBD_FAIL = integer
The maximum number of retries for reaching a non-responding slave batch
daemon, sbatchd. The interval between retries is defined by
MBD_SLEEP_TIME. If the master batch daemon fails to reach a host, and has
retried MAX_SBD_FAIL times, the host is considered unavailable. When a host
becomes unavailable the mbatchd assumes that all jobs running on that host
have exited, and all rerunable jobs (jobs submitted with the bsub -r option)
are scheduled to be rerun on another host.

Default: 3.

CLEAN_PERIOD = integer
The amount of time that job records for jobs that have finished or have been
killed are kept in-core in the master batch daemon after they have finished.
Users can still see all jobs after they have finished using the bjobs command.
For jobs that finished more than CLEAN_PERIOD seconds ago, use the bhist
command.

Default: 3600 (seconds).

MAX_JOB_NUM = integer
The maximum number of finished jobs whose events are to be stored in an
event log file (see the lsb.events(5) manual page). Once the limit is reached,
the mbatchd switches the event log file. See ‘LSF Batch Event Log’ on page 80.

Default: 1000.

HIST_HOURS = integer
The number of hours of resource consumption history taken into account
when calculating the priorities of users in a host partition (see ‘Host Partitions’
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
on page 206) or a fairshare queue (see ‘The lsb.queues File’ on page 208). This
parameter is meaningful only if a fairshare queue or a host partition is defined.
In calculating a user’s priority, LSF Batch uses a decay factor which scales the
CPU time used by the user’s jobs such that 1 hour of CPU time used is
equivalent to 0.1 hour after HIST_HOURS have elapsed.

Default: five (hours).

PG_SUSP_IT = integer
The time interval (in seconds) that a host should be interactively idle (it > 0)
before jobs suspended because of a threshold on the pg load index can be
resumed. This parameter is used to prevent the case in which a batch job is
suspended and resumed too often as it raises the paging rate while running
and lowers it while suspended. If you are not concerned with the interference
with interactive jobs caused by paging, the value of this parameter may be set
to 0.

Default: 180 (seconds).

MAX_JOB_ARRAY_SIZE
The MAX_JOB_ARRAY_SIZE parameter is set in the in lsb.params file. This
parameter specifies the maximum size of a job array that can be created by a
user for a single job submission. A large job array allows a user to submit a
large number of jobs to the system with a single job submission.

Maximum value: 2046 (jobs)

Default value: 1000 (jobs)

JOB_TERMINATE_INTERVAL

This parameter specifies the time interval between sending SIGINT,
SIGTERM, and SIGKILL when terminating a job. When a job is terminated,
the job is sent SIGINT, SIGTERM, and SIGKILL in sequence with a sleep
time of JOB_TERMINATE_INTERVAL between sending the signals. This
allows the job to clean up if necessary.

Default: 10 (seconds).

CPU_TIME_FACTOR
Weighting factor for the CPU time consumed by a user in calculating that
user's fairshare priority in a fairshare queue or host partition.

UNIX
���

�

Default: 0.7.

RUN_TIME_FACTOR
Weighting factor for the run time consumed by a user in calculating the user’s
fairshare priority in a fairshare queue or host partition.

Default: 0.7.

RUN_JOB_FACTOR
Weighting factor for the number of job slots used or reserved by a user in
calculating the user’s fairshare priority in a fairshare queue or host partition.

Default: 3.0.

+DQGOLQJ�&UD\�146�,QFRPSDWLELOLWLHV

Cray NQS is incompatible with some of the public domain versions of NQS. Even
worse, different versions of NQS on Cray are incompatible with each other. If your
NQS server host is a Cray, some additional parameters may be needed for LSF Batch
to understand the NQS protocol correctly.

If the NQS version on a Cray is NQS 80.42 or NQS 71.3, then no extra setup is needed.
For other versions of NQS on a Cray, you need to define NQS_REQUESTS_FLAGS and
NQS_QUEUES_FLAGS.

NQS_REQUESTS_FLAGS = integer
If the version is NQS 1.1 on a Cray, the value of this flag is 251918848.

For other versions of NQS on a Cray, see ‘Handling Cray NQS Incompatibilities’
on page 273 to get the value for this flag.

NQS_QUEUES_FLAGS = integer
See ‘Handling Cray NQS Incompatibilities’ on page 273 to get the value for this
flag. This flag is used by LSF Batch to get the NQS queue information.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
7KH�lsb.users�)LOH

The lsb.users file contains configuration information about individual users and
groups of users in an LSF Batch cluster. This file is optional.

81,;�17�8VHU�*URXSV

User groups defined by UNIX/NT often reflect certain relationships among users. It is
natural to control computer resource access using UNIX/NT user groups.

You can specify a UNIX/NT group anywhere an LSF Batch user group can be
specified. On UNIX groups recognized by LSF Batch are the groups that are returned
by a getgrnam(3) call. Note that only group members listed in the /etc/group file
or the group.byname NIS map are accepted; the user’s primary group as defined in
the /etc/passwd file is ignored. On NT, groups are obtained from the primary
domain controller.

If both an individual user and a UNIX/NT group have the same name, LSF assumes
that the name refers to the individual user. In this case you can specify the UNIX/NT
group name by appending a slash ‘/’ to the group name. For example, if you have both
a user and a group named admin on your system, LSF interprets admin as the name
of the user, and admin/ as the name of the group.

/LPLWDWLRQV

Although it is convenient to use UNIX groups as LSF Batch user groups, it may
produce unexpected results if the UNIX group definitions are not homogeneous across
machines. The UNIX groups picked up by LSF Batch are the groups obtained by calling
getgrnam(3) on the master host. If the master host later changes to another host, the
groups picked up might be different.

This will not be a problem if all the UNIX user groups referenced by LSF Batch
configuration files are uniform across all hosts in the LSF cluster.

/6)�%DWFK�8VHU�*URXSV

A user group is a group of users with a name assigned. User groups can be used in
defining the following parameters in LSF Batch configuration files:
���

�

• USERS in the lsb.queues file for authorized queue users.

• USER_NAME in the lsb.users file for user job slot limits.

• USER_SHARES (optional) in the lsb.hosts file for host partitions or in the
lsb.queues file for queue fairshare policies.

The optional UserGroup section begins with a line containing the mandatory
keywords GROUP_NAME and GROUP_MEMBER. Each subsequent line defines a single
group. The first word on the line is the group name. The rest of the line contains a list
of group members, enclosed in parentheses and separated by white space. A group can
be included in another group; this means that every member of the first group is also
a member of the second.

A user or group can be a member of more than one group. The reserved name all can
be used to specify all users.

Begin UserGroup
GROUP_NAME GROUP_MEMBER
eng_users (user1 user4 user5 user6)
tech_users (eng_users user7)
acct_users (user2 user3 user1)
End UserGroup

6KDUH�7UHH�'HILQHG�LQ�8VHU�*URXSV

User groups in LSF Batch can also be configured in a hierarchical way to form a share
tree for hierarchical fairshare purpose. See ‘Hierarchical Fairshare’ on page 117 for the
concept of hierarchical fairshare.

To configure a share tree, the keyword USER_SHARES can be used in the UserGroup
section. The USER_SHARES parameter is a list of [name, shares] pairs, where name is
a user name or user group name. shares is a positive integer specifying the number
of shares this user or user group has.

shares determine the static priority of users or user groups relative to each other. So
the values of shares only make relative sense. The share tree defined in this section has
no effect unless it is actually used by a share provider, such as a queue or host partition.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
An example of a share tree configuration is described in ‘Understanding How Fairshare
Works’ on page 119.

([WHUQDO�8VHU�*URXSV

LSF Batch supports the notion of an external user group. An external user group is a
user group whose membership users are not statically configured, but are instead
retrieved by running an external executable egroup in the directory specified by
LSF_SERVERDIR. This feature allows a site to maintain group definitions outside of
LSF and imported them into LSF Batch configuration at initialization time.

egroup is invoked with the arguments "-u user_group_name" and is run as the LSF
administrator during mbatchd startup time. egroup must write the user names for the
group to its standard output, with each name being separated by white space.

To tell LSF Batch that the group members should be retrieved using egroup, simply
put "!" in the GROUP_MEMBER column of the configuration file. For example:

Begin UserGroup
GROUP_NAME GROUP_MEMBER
regular_users (user1 user2 user3 user4)
part_time_users (!)
End UserGroup

8VHU�DQG�*URXS�-RE�6ORW�/LPLWV

Each user or user group can have a cluster-wide job slot limit and a per-processor job
slot limit. These limits apply to the total number of job slots used by batch jobs owned
by the user or group, in all queues. LSF Batch only dispatches the specified number of
jobs at one time; if the user submits too many jobs, they remain pending and other
users’ jobs are run if hosts are available.

Detailed descriptions about job slot limits and how they are enforced by LSF Batch are
described in ‘User Job Slot Limits’ on page 27.

If a job slot limit is specified for a user group, the total number of job slots used by all
users in that group are counted. If a user is a member of more than one group, each of
that user’s jobs is counted against the limit for all groups to which that user belongs.
���

�

This file can also contain a User section. The first line of this section gives the
keywords that apply to the rest of the lines. The possible keywords include:

USER_NAME
Name of a user or user group. This keyword is mandatory. If the name is a
group name and the name is appended with an ‘@’, the job slot limits defined
apply to each user in that group, as you could otherwise do by listing each user
in that group in separate entries in this section.

MAX_JOBS
System-wide job slot limits. This limits the total number of job slots this user
or user group can use at any time.

JL/P
Per processor job slot limit. This limits the maximum number of job slots this
user or user group can use per processor. This number can be a fraction such
as 0.5 so that it can also serve as a per-host limit. This number is rounded up
to the nearest integer equal to or greater than the total job slot limits for a host.
For example, if JL/P is 0.5, on a 4-CPU multi-processor host, the user can only
use up to 2 job slots at any time. On a uni-processor machine, the user can use
1 job slot.

The reserved user name default can be used for USER_NAME to set a limit for each
user or group not explicitly named. If no default limit is specified, users and groups
not listed in this section can run an unlimited number of jobs.

The default per-user job slot limit also applies to groups. If you define groups with
many users, you may need to configure a job slot limit for that group explicitly to
override the default setting.

Begin User
USER_NAME MAX_JOBS JL/P
user3 10 -
user2 4 1
eng_users@ 10 1
default 6 1
End User
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
7KH lsb.hosts)LOH

The lsb.hosts file contains host related configuration information for the batch
server hosts in the cluster. This file is optional.

+RVW�6HFWLRQ

The optional Host section contains per-host configuration information. Each host, host
model or host type can be configured to run a maximum number of jobs and a limited
number of jobs for each user. Hosts, host models or host types can also be configured
to run jobs only under specific load conditions or time windows.

If no hosts, host models or host types are named in this section, LSF Batch uses all hosts
in the LSF cluster as batch server hosts. Otherwise, only the named hosts, host models
and host types are used by LSF Batch. If a line in the Host section lists the reserved host
name default, LSF Batch uses all hosts in the cluster and the settings on that line
apply to every host not referenced in the section, either explicitly or by listing its model
or type.

Note
When you modify the cluster by adding or removing hosts, no changes are made to the
lsb.hosts file. This does not affect the default configuration, but if hosts, host
models, or host types are specified in this file, you should check this file whenever you
make changes to the cluster, and update it manually if necessary.

The first line of this section gives the keywords that apply to the rest of the lines. The
keyword HOST_NAME must appear. Other supported keywords are optional.

HOST_NAME
The name of a host defined in the lsf.cluster.cluster file, a host model
or host type defined in the lsf.shared file, or the reserved word default.

MXJ
The maximum number of job slots for the host. On multiprocessor hosts MXJ
should be set to at least the number of processors to fully use the CPU
resource.

Default: unlimited.
���

�

JL/U
The maximum number of job slots any single user can use on this host at any
time. See ‘Job Slot Limits’ on page 26 for details of job slot limits.

Default: unlimited.

DISPATCH_WINDOW
Times when this host will accept batch jobs.

Dispatch windows are specified as a series of time windows. See ‘How LSF
Batch Schedules Jobs’ on page 19 for detailed format of time windows.

Default: always open.

Note
Earlier versions of LSF used the keyword RUN_WINDOW instead of
DISPATCH_WINDOW in the lsb.hosts file. This keyword is still accepted
to provide backward compatibility.

MIG
Migration threshold in minutes. If a checkpointable or rerunable job
dispatched to this host is suspended for more than MIG minutes, the job is
migrated. The suspended job is checkpointed (if possible) and killed. Then LSF
restarts or reruns the job on another suitable host if one is available. If LSF is
unable to rerun or restart the job immediately, the job reverts to PEND status
and is requeued with a higher priority than any other submitted job, so it is
rerun or restarted before other queued jobs are dispatched.

Each LSF Batch queue can also specify a migration threshold. Jobs are
migrated if either the host or the queue specifies a migration threshold. If MIG
is defined both here and in lsb.queues, the lower threshold is used.

Jobs that are neither checkpointable nor rerunable are not migrated.

Default: no automatic migration.

r15s, r1m, r15m, ut, pg, io, ls, it, tmp, swp, mem, name
Scheduling and suspending thresholds for the dynamic load indices
supported by LIM, including external load index names. Each load index
column must contain either the default entry or two numbers separated by a
slash ‘/’, with no white space. The first number is the scheduling threshold for
the load index; the second number is the suspending threshold. See Section 4,
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
‘Resources’, beginning on page 35 of the LSF Batch User’s Guide for complete
descriptions of the load indices.

Each LSF Batch queue also can specify scheduling and suspending thresholds
in lsb.queues. If both files specify thresholds for an index, those that apply
are the most restrictive ones apply.

Default: no threshold.

CHKPNT
Defines the form of checkpointing available. Currently, only the value ‘C’ is
accepted. This indicates that checkpoint copy is supported. With checkpoint
copy, all opened files are automatically copied to the checkpoint directory by
the operating system when a process is checkpointed. Checkpoint copy is
currently supported only on ConvexOS.

Default: no checkpoint copy.

The keyword line should name only the load indices that you wish to configure on a
per-host basis. Load indices not listed on the keyword line do not affect scheduling
decisions.

Each following line contains the configuration information for one host, host model or
host type. This line must contain one entry for each keyword on the keywords line. Use
empty parentheses ‘()’ or a dash ‘-’ to specify the default ‘don’t care’ value for an entry.
The entries in a line for a host override the entries in a line for its model or type.

Begin Host
HOST_NAME MXJ JL/U r1m pg DISPATCH_WINDOW
hostA 1 - 0.6/1.6 10/20 (5:19:00-1:8:30 20:00-8:30)
SUNSOL 1 - 0.5/2.5 - 23:00-8:00
default 2 1 0.6/1.6 20/40 ()
End Host

This example Host section shows host-specific configuration for a host and a host
type, along with default values for all other load-sharing hosts. Host hostA runs one
batch job at a time. A job will only be started on hostA if the r1m index is below 0.6 and
the pg index is below 10; the running job is stopped if the r1m index goes above 1.6 or
the pg index goes above 20. Host hostA only accepts batch jobs from 19:00 on Friday
evening until 8:30 Monday morning, and overnight from 20:00 to 8:30 on all other days.
���

�

For hosts of type SUNSOL, the pg index does not have host-specific thresholds and such
hosts are only available overnight from 23:00 to 8:00. SUNSOL must be a host type
defined in the lsf.shared file.

The entry with host name default applies to each of the other hosts in the LSF cluster.
Each host can run up to two jobs at the same time, with at most one job from each user.
These hosts are available to run jobs at all times. Jobs may be started if the r1m index
is below 0.6 and the pg index is below 20, and a job from the lowest priority queue is
suspended if r1m goes above 1.6 or pg goes above 40.

+RVW�*URXSV

The HostGroup section is optional. This section defines names for sets of hosts. The
host group name can then be used in other host group, host partition, and batch queue
definitions, as well as on an LSF Batch command line. When a host group name is used,
it has exactly the same effect as listing all of the host names in the group.

Host groups are specified in the same format as user groups in the lsb.users file.

The host group section must begin with a line containing the mandatory keywords
GROUP_NAME and GROUP_MEMBER. Each other line in this section must contain an
alphanumeric string for the group name, and a list of host names or previously defined
group names enclosed in parentheses and separated by white space.

Host names and host group names can appear in more than one host group. The
reserved name all specifies all hosts in the cluster.

Begin HostGroup
GROUP_NAME GROUP_MEMBER
licence1 (hostA hostD)
sys_hosts (hostF license1 hostK)
End HostGroup

This example section defines two host groups. The group license1 contains the hosts
hostA and hostD; the group sys_hosts contains hostF and hostK, along with all hosts
in the group license1. Group names must not conflict with host names.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
([WHUQDO�+RVW�*URXSV

LSF Batch allows host membership to be maintained outside LSF Batch and imported
into LSF Batch configuration at initialization time. An executeable egroup in the
LSF_SERVERDIR directory is invoked to obtain the list of members for a given host
group. The egroup should be invoked with argument "-m host_hgroup_name".
The group members, separated by spaces, should be written to the standard output
stream of egroup. The egroup is run as the LSF administrator during mbatchd
startup time.

To tell LSF Batch that the group membership should be retrieved via egroup, simply
put "!" in the GROUP_MEMBER column of the HostGroup section. For example:

Begin HostGroup
GROUP_NAME GROUP_MEMBER
Big_servers (!)
desk_tops (host1 host2 host3 host4)
End HostGroup

+RVW�3DUWLWLRQV

The HostPartition section is optional, and you can configure more than one such
section. See ‘Controlling Fairshare’ on page 113 for more discussions of fairshare and
host partitions.

Each Host Partition section contains a list of hosts and a list of user shares. Each host
can be named in at most one host partition. Hosts that are available for batch jobs, but
not included in any host partition are shared on a first-come, first-served basis. The
special host name all can be specified to configure a host partition that applies to all
hosts in a cluster.

Each user share contains a single user name or user group name, and an integer
defining the shares available to that user. The special user name ‘others’ can be used
to configure total shares for all users not explicitly listed. The special name ‘default’
configures the default per-user share for each user not explicitly named. Only one of
others or default may be configured in a single host partition.
���

�

Note
Host partition fairshare scheduling is an alternative to queue level fairshare
scheduling. You cannot use both in the same LSF cluster.

The following example shows a host partition applied to hosts hostA and hostD:

Begin HostPartition
HPART_NAME = part1
HOSTS = hostA hostD
USER_SHARES = [eng_users, 7] [acct_users, 3] [others, 1]
End HostPartition

In the example, the total of all the shares is 7 + 3 + 1 = 11. This host partition specifies
that all users in the user group eng_users should get 7/11 of the resources, the
acct_users group should get 3/11, and all other users together get 1/11.

Note that the shares for a group specify the total share for all users in that group, unless
the group name has a trailing ‘@’. In this case, the share is for each individual user in
the group. If you want to further divide shares allocated to a group among group
members, you can define a share tree for the group in the lsb.users file. See ‘Hierarchical
Fairshare’ on page 117 for more details.

Fairshare is only enforced when jobs from more than one user or group are pending.
If only one user or group is submitting jobs, those jobs can take all the available time
on the partitioned hosts. If another user or group begins to submit jobs, those jobs are
dispatched first until the shares reach the configured proportion.

The following example shows a host partition that gives users in the eng_users
group very high priority, but allows jobs from other users to run if there are no jobs
from the eng_users group waiting:

Begin HostPartition
HPART_NAME = eng
Hosts = all
User_Shares = ([eng_users, 500] [others, 1])
End HostPartition

Hosts belonging to a host partition should not be configured in the HOSTS parameter
of a queue together with other hosts not belonging to the same host partition.
Otherwise, the following two limitations may apply:
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�

sts not

e
more
• Jobs in the queue sometimes may be dispatched to the host partition even though ho
belonging to any host partition have a lighter load.

• If some hosts belong to one host partition and some hosts belong to another, only th
priorities of one host partition are used when dispatching a parallel job to hosts from
than one host partition.

7KH�lsb.queues�)LOH

The lsb.queues file contains definitions of the batch queues in an LSF cluster. This
file is optional. If no queues are configured, LSF Batch creates a queue named default,
with all parameters set to default values (see the description of DEFAULT_QUEUE in
‘The lsb.params File’ on page 193).

Queue definitions are horizontal sections that begin with the line Begin Queue and
end with the line End Queue. You can define at most 40 queues in an LSF Batch
cluster. Each queue definition contains the following parameters:

*HQHUDO�3DUDPHWHUV

QUEUE_NAME = string
The name of the queue. This parameter must be defined, and has no default.
The queue name can be any string of non-blank characters up to 40 characters
long. It is best to use 6 to 8 character names made up of letters, digits, and
possibly underscores ‘_’ or dashes ‘-’.

PRIORITY = integer
This parameter indicates the priority of the queue relative to other LSF Batch
queues. Note that this is an LSF Batch dispatching priority, completely
independent of the UNIX scheduler’s priority system for time-sharing
processes. The LSF Batch NICE parameter is used to set the UNIX time-sharing
priority for batch jobs.

LSF Batch tries to schedule jobs from queues with larger PRIORITY values
first. This does not mean that jobs in lower priority queues are not scheduled
unless higher priority queues are empty. Higher priority queues are checked
���

�

first, but not all jobs in them are necessarily scheduled. For example, a job
might be held because no machine with the right resources is available, or all
jobs in a queue might be held because the queue’s dispatch window or run
window (see below) is closed. Lower priority queues are then checked and, if
possible, their jobs are scheduled.

If more than one queue is configured with the same PRIORITY, LSF Batch
schedules jobs from all these queues in first-come, first-served order.

Default: 1.

NICE = integer
Adjusts the UNIX scheduling priority at which jobs from this queue execute.
The default value of 0 maintains the default scheduling priority for UNIX
interactive jobs. This value adjusts the run time priorities for batch jobs on a
queue-by-queue basis, to control their effect on other batch or interactive jobs.
See the nice(1) manual page for more details.

Default: 0.

QJOB_LIMIT = integer
Job slot limit for the queue. This limits the total number of job slots that this
queue can use at any time.

Default: unlimited.

UJOB_LIMIT = integer
Per user job slot limit for the queue. This limits the total number of job slots any
user of this queue can use at any time.

Default: unlimited.

PJOB_LIMIT = float
Per processor job slot limit. This limits the total number of job slots this queue
can use on any processor at any time. This limit is configured per processor so
that multiprocessor hosts automatically run more jobs.

Default: unlimited.

HJOB_LIMIT = integer
Per host job slot limit. This limits the total number of job slots this queue can
use on any host at any time. This limit is configured per host regardless of the
number of processors it may have. This may be useful if the queue dispatches
jobs which require a node-locked license. If there is only one node-locked
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
license per host then the system should not dispatch more than one job to the
host even if it is a multiprocessor host. For example, the following will run a
maximum of one job on each of hostA, hostB, and hostC:

Begin Queue
.
HJOB_LIMIT = 1
HOSTS=hostA hostB hostC
End Queue

Default: unlimited.

RUN_WINDOW = string
The time windows in which jobs are run from this queue. Run windows are
described in ‘How LSF Batch Schedules Jobs’ on page 19.

When the queue run window closes, the queue stops dispatching jobs and
suspends any running jobs in the queue. Jobs suspended because the run
window closed are restarted when the window reopens. Suspended jobs also
can be switched to a queue with run its window open; the job restarts as soon
as the new queue’s scheduling thresholds are met.

Default: always open.

DISPATCH_WINDOW = string
The time windows in which jobs are dispatched from this queue. Once
dispatched, jobs are no longer affected by the dispatch window. Queue
dispatch windows are analogous to the host dispatch windows described on
page 203.

Default: always open.

ADMINISTRATORS = name ...
A list of queue-level administrators. The list of names can include any valid
user name in the system, any UNIX user group name, and any user group
name configured in the lsb.users file. Queue administrators can perform
operations on any job in the queue as well as on the queue itself (for example,
open/close, activate/deactivate). Switching a job from one queue to another
requires the administrator to be authorized for both the current and the
destination queues.
���

�

The bqueues(1) command with the -l option will display configured
administrators for each queue.

Default: No queue-level administrators are defined.

3URFHVVRU�5HVHUYDWLRQ�IRU�3DUDOOHO�-REV

The processor reservation feature is disabled by default. To enable it, specify the
SLOT_RESERVE keyword in the queue:

Begin Queue
.
PJOB_LIMIT=1
SLOT_RESERVE = MAX_RESERVE_TIME[n]
.
End Queue

The value of the keyword is MAX_RESERVE_TIME[n] where n is a multiple of
MBD_SLEEP_TIME (MBD_SLEEP_TIME is defined in lsb.params).
MAX_RESERVE_TIME controls the maximum time a slot is reserved for a job. It is
required to avoid deadlock situations in which the system is reserving job slots for
multiple parallel jobs such that none of them can acquire sufficient resources to start.
The system will reserve slots for a job until n*MBD_SLEEP_TIME minutes. If an
insufficient number have been accumulated, all slots are freed and made available to
other jobs. The maximum reservation time takes effect from the start of the first
reservation for a job and a job can go through multiple reservation cycles before it
accumulates enough slots to be actually started.

%DFNILOO�6FKHGXOLQJ

A queue can be configured to allow its jobs to backfill by using the BACKFILL keyword
in the queue:

Begin Queue
.
.
BACKFILL=y
.
.
End Queue
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�

t the

ured.

ue

 job is
tion
If the BACKFILL keyword is specified, use either y or Y to enable backfilling. To
disable backfilling without removing the keyword, use n, N, or leave a blank space after
the “=” symbol.

Jobs in a backfill queue can make use of slots reserved by jobs in other queues. The
SLOT_RESERVE parameter can be used to reserve processors for jobs in a queue. If the
backfill queue also specifies the SLOT_RESERVE parameter, then backfilling can occur
among jobs within the queue.

5HVWULFWLRQV

The following restrictions apply to the backfill policy:

• A backfill queue cannot be preemptable.

• Any preemptive queue whose priority is higher than the backfill queue cannot preemp
jobs in backfill queue.

• A job will not have an estimated start time immediately after the mbatchd is reconfig

'HDGOLQH�&RQVWUDLQW�6FKHGXOLQJ

LSF Batch can take into account the constraints imposed by deadlines when
scheduling. By default, LSF Batch does not start a job that is not expected to finish.
There are two deadline constraints which affect a job:

• run window of a queue

When a run window configured for a queue closes, jobs running in the queue are
suspended. By default, LSF Batch only schedules jobs that can finish before the que
closes.

• termination time of a job

The job's termination time is absolute, and when the termination time is reached, the
killed. By default, LSF Batch only schedules jobs that can finish before their termina
time.

The amount of time that each job is expected to take is specified by the run limit of the
queue (see RUNLIMIT on page 218).
���

�

The run limit must be defined properly for the scheduling feature to work properly. If
the run limit is left at the default value, unlimited time, LSF Batch cannot schedule any
jobs to finish within the deadline constraints.

The run limit specifies the maximum amount of time allowed for the job to run, but
there is no way to know how long the job will actually take. It may not be appropriate
to schedule jobs and calculate deadline constraints using this time limit, since not all
jobs will take the maximum amount of time to run.

To override the default behaviour and start all jobs no matter what the run limit is, use
the queue level parameter IGNORE_DEADLINE. In this example, LSF Batch is
configured to schedule jobs in queue liberal without observing the deadline
constraints.

Begin Queue
QUEUE_NAME = liberal
.
IGNORE_DEADLINE=y
.
End Queue

)OH[LEOH�([SUHVVLRQV�IRU�4XHXH�6FKHGXOLQJ

LSF Batch provides a variety of possibly overlapping options for configuring job
scheduling policies.

4XHXH�/HYHO�5HVRXUFH�5HTXLUHPHQW�

The condition for dispatching a job to a host can be specified through the queue-level
RES_REQ parameter. Using a resource requirement string you can specify conditions
in a more flexible manner than using the loadSched thresholds. For example:

RES_REQ= select[((type==ALPHA && r1m < 2.0)||(type==HPPA && r1m < 1.0))]

will allow a queue, which contains ALPHA and HPPA hosts, to have different
thresholds for different types of hosts. Using the hname resource in the RES_REQ
string allows you to set up different conditions for different hosts in the same queue,
for example:

RES_REQ= select[((hname=hostA && mem > 50)||(hname==hostB && mem > 100))]
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�

g
When RES_REQ is specified in the queue and no job-level resource requirement is
specified, then RES_REQ becomes the default resource requirement for the job. This
allows administrators to override the LSF default of executing only on the same type
as the submission host. If a job level resource requirement is specified together with
RES_REQ, then a host must satisfy both requirements to be eligible for running the job.
Similarly, the loadSched thresholds, if specified, must also be satisfied for a host to
be eligible.

The order and span sections of the resource requirement string can also be specified
in the RES_REQ parameter. These sections in RES_REQ are ignored if they are also
specified by the user in the job level resource requirement.

4XHXH�/HYHO�5HVRXUFH�5HVHUYDWLRQ�

The resource reservation feature allows user’s to specify that the system should reserve
resources after a job starts. This feature is also available at the queue level.

The queue level resource reservation can be configured as part of the RES_REQ
parameter. The RES_REQ can include a rusage section to specify the amount of
resources a job should reserve after it is started. For example:

Begin Queue
.
RES_REQ = swap>50 rusage[swp=40:duration=5h:decay=1]
.
End Queue

If duration is not specified, the default is to reserve the resource for the lifetime of the
job. If decay is specified as 1, then the reserved resource will be linearly decreased over
the time specified by duration. If decay is not specified, then the resource reserved will
not decrease over time. See ‘Resource Reservation’ on page 91 of the LSF Batch User’s
Guide and lsfintro(1) for detailed syntax of rusage parameter.

Note
The use of RES_REQ affects the pending reasons as displayed by bjobs. If RES_REQ
is specified in the queue and the loadSched thresholds are not specified the pendin
reasons for each individual load index will not be displayed.
���

�

6XVSHQGLQJ�&RQGLWLRQ

The condition for stopping a job can be specified using a resource requirement string
in the queue level STOP_COND parameter. If loadStop thresholds have been
specified, then a job will be suspended if either the STOP_COND is TRUE or the
loadStop thresholds are violated. For example, the following will suspend a job
based on the idle time for desktop machines and based on availability of swap and
memory on compute servers. Note that cs is a boolean resource defined in the
lsf.shared file and configured in the lsf.cluster.cluster file to indicate that
a host is a compute server:

Begin Queue
.
STOP_COND= select[((!cs && it < 5) || (cs && mem < 15 && swap < 50))]
.
End Queue

Note
Only the select section of the resource requirement string is considered when
stopping a job. All other sections are ignored.

The use of STOP_COND affects the suspending reasons as displayed by the bjobs
command. If STOP_COND is specified in the queue and the loadStop thresholds are
not specified, the suspending reasons for each individual load index will not be
displayed.

Note
LSF Batch will not suspend a job if the job is the only batch job running on the host
and the machine is interactively idle (it >0).

5HVXPH�&RQGLWLRQ

A separate RESUME_COND allows you to specify the condition that must be satisfied on
a host if a suspended job is to be resumed. If RESUME_COND is not defined, then the
loadSched thresholds are used to control resuming of jobs. The loadSched
thresholds are ignored if RESUME_COND is defined.

Note that only the select section of the resource requirement string is considered
when resuming a job. All other sections are ignored.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�

5

ost
/RDG�7KUHVKROGV

The queue definition can contain thresholds for 0 or more of the load indices. Any load
index that does not have a configured threshold has no effect on job scheduling. A
description of all the load indices is given in Section 4, ‘Resources’, beginning on page 3
of the LSF Batch User’s Guide.

Each load index is configured on a separate line with the format:

index = loadSched/loadStop

index is the name of the load index, for example r1m for the 1-minute CPU run queue
length or pg for the paging rate. loadSched is the scheduling threshold for this load
index. loadStop is the suspending threshold.

The loadSched and loadStop thresholds permit the specification of conditions
using simple AND/OR logic. For example, the specification:

MEM=100/10
SWAP=200/30

translates into a loadSched condition of mem>=100 && swap>=200 and a
loadStop condition of mem < 10 || swap < 30. The loadSched condition must
be satisfied by a host before a job is dispatched to it and also before a job suspended on
a host can be resumed. If the loadStop condition is satisfied, a job is suspended.

Note
LSF Batch will not suspend a job if the job is the only batch job running on the h
and the machine is interactively idle (it >0).

The scheduling threshold also defines the host load conditions under which
suspended jobs in this queue may be resumed.

When LSF Batch suspends or resumes a job, it invokes the SUSPEND or RESUME action
as described in ‘Configurable Job Control Actions’ on page 228. The default SUSPEND
action is to send signal SIGSTOP, while default action for RESUME is to send signal
SIGCONT.
���

�

Note
The r15s, r1m, and r15m CPU run queue length conditions are compared to the
effective queue length as reported by lsload -E, which is normalised for
multiprocessor hosts. Thresholds for these parameters should be set at appropriate
levels for single processor hosts.

5HVRXUFH�/LPLWV

Batch queues can enforce resource limits on jobs. LSF Batch supports most of the
resource limits that the underlying operating system supports. In addition, LSF Batch
also supports a few limits that the underlying operating system does not support.

CPULIMIT = [hour:]minute[/host_spec]
Maximum CPU time allowed for a job running in this queue. This limit applies
to the whole job, no matter how many processes the job may contain. If a job
consists of multiple processes, the CPULIMIT parameter applies to all
processes in a job. If a job dynamically spawns processes, the CPU time used
by these processes is accumulated over the life of the job. Processes that exist
for less than 30 seconds may be ignored.

The limit is scaled; the job is allowed to run longer on a slower host, so that a
job can do roughly the same amount of work no matter what speed of host it
is dispatched to.

The time limit is given in the form [hour:]minute[/host_spec]. minute may be
greater than 59. Three and a half hours can be specified either as 3:30, or 210.
host_spec is shared by CPULIMIT and RUNLIMIT (see below). It may be a host
name or a host model name which is used to adjust the CPU time limit or the
wall-clock run time limit. In its absence, the DEFAULT_HOST_SPEC defined for
this queue or defined for the whole cluster is assumed. If
DEFAULT_HOST_SPEC is not defined, the LSF Batch server host with the
largest CPU factor is assumed.

CPU time limits are normalized by multiplying the CPULIMIT parameter by
the CPU factor of the specified or default host, and then dividing by the CPU
factor of the execution host. If the specified host has a CPU factor of 2 and
another host has a factor of 1, then a CPULIMIT value of 10 minutes allows jobs
on the specified host to run for 10 minutes, and jobs on the slower host to run
for 20 minutes (2 * 10 / 1). See ‘Host Models’ on page 174 and ‘Descriptive Fields’
on page 182 for more discussion of CPU factors.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
Default: unlimited.

RUNLIMIT = [hour:]minute[/host_spec]
Maximum wall clock running time allowed for batch jobs in this queue. Jobs
that are in the RUN state for longer than RUNLIMIT are killed by LSF Batch.
RUNLIMIT is available on all host types. For an explanation of the form of the
time limit, see CPULIMIT above.

Default: unlimited.

FILELIMIT = integer
The per-process (hard) file size limit (in KB) for all the processes belonging to
a job from this queue (see getrlimit(2)).

Default: unlimited.

MEMLIMIT = integer
The per-process (hard) process resident set size limit (in KB) for all the
processes belonging to a job from this queue (see getrlimit(2)). The
process resident set size limit cannot be set on HP-UX and Sun Solaris 2.x, so
this limit has no effect on an HP-UX or a Sun Solaris 2.x machine.

Default: unlimited.

DATALIMIT = integer
The per-process (hard) data segment size limit (in KB) for all the processes
belonging to a job from this queue (see getrlimit(2)). The data segment
size limit cannot be set on HP-UX, so this limit has no effect on an HP-UX
machine.

Default: unlimited.

STACKLIMIT = integer
The per-process (hard) stack segment size limit (in KB) for all the processes
belonging to a job from this queue (see getrlimit(2)). The stack segment
size limit cannot be set on HP-UX, so this limit has no effect on an HP-UX
machine.

Default: unlimited.

CORELIMIT = integer
The per-process (hard) core file size limit (in KB) for all the processes
���

�

belonging to a job from this queue (see getrlimit(2)). The core file size
limit cannot be set on HP-UX, so this limit has no effect on an HP- UX machine.

Default: unlimited.

PROCLIMIT = integer
The maximum number of job slots that can be allocated to a parallel job in the
queue. Jobs which request more job slots via the -n option of bsub(1) than
the queue can accept will be rejected.

Default: unlimited.

PROCESSLIMIT = integer
This limits the number of concurrent processes that can be part of a job.

Default: unlimited.

SWAPLIMIT = integer
The amount of total virtual memory limit (in kilobytes) for a job from this
queue. This limit applies to the whole job, no matter how many processes the
job may contain.

The action taken when a job exceeds its SWAPLIMIT or PROCESSLIMIT is to
send SIGQUIT, SIGINT, then SIGTERM, and then SIGKILL in sequence. For
CPULIMIT, SIGXCPU is sent before SIGINT, SIGTERM, and SIGKILL.

Default: unlimited.

NEW_JOB_SCHED_DELAY = integer
This parameter controls when a scheduling session should be started after a
new job is submitted. For example:

Begin Queue
.
NEW_JOB_SCHED_DELAY=0
.
End Queue

If NEW_JOB_SCHED_DELAY is 0 seconds, a new scheduling session is started
as soon as a job is submitted to this queue. This parameter can be used to
obtain faster response times for jobs in a queue such as a queue for interactive
jobs.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�

his
 the
Setting a value of 0 can cause the mbatchd to be busy if there are a lot of
submissions.

Default: 10 seconds.

JOB_ACCEPT_INTERVAL = integer
This parameter has the same effect as JOB_ACCEPT_INTERVAL defined in
lsb.params file, except that it applies to this queue.

Default: JOB_ACCEPT_INTERVAL defined in lsb.params or 1 if it is not
defined in lsb.params file.

INTERACTIVE = NO | ONLY
An interactive job can be submitted via the -I option of bsub command. By
default, a queue would accept both interactive and background jobs. This
parameter allows LSF cluster administrator to limit a queue to not accept
interactive jobs (NO), or to only accept interactive jobs (ONLY).

(OLJLEOH�+RVWV�DQG�8VHUV

Each queue can have a list of users and user groups who are allowed to submit batch
jobs to the queue, and a list of hosts and host groups that restricts where jobs from the
queue can be dispatched.

USERS = name ...
The list of users who can submit jobs to this queue. The list of names can
include any valid user name in the system, any UNIX user group name, and
any user group name configured in the lsb.users file. The reserved word
all may be used to specify all users.

Note
LSF cluster administrator can submit jobs to any queue, even if the login
name of the cluster administrator is not defined in the USERS parameter of
the queue. LSF cluster administrator can also switch a user’s jobs into t
queue from other queues, even if this user’s login name is not defined in
USERS parameter.

Default: all.

HOSTS = name[+pref_level] ...
The list of hosts on which jobs from this queue can be run. Each name in the
list must be a valid host name, host group name or host partition name as
���

�

configured in the lsb.hosts file. The name can be optionally followed by
+pref_level to indicate the preference for dispatching a job to that host, host
group, or host partition. pref_level is a positive number specifying the
preference level of that host. If a host preference is not given, it is assumed to
be 0.

Hosts at the same level of preference are ordered by load. For example:

HOSTS = hostA+1 hostB hostC+1 servers+3
where servers is a host group name referring to all computer servers. This
defines three levels of preferences: run jobs on servers as much as possible, or
else on hostA and hostC. Jobs should not run on hostB unless all other hosts are
too busy to accept more jobs.

If you use the reserved word ’others’, it means jobs should run on all hosts not
explicitly listed. You do not need to define this parameter if you want to use
all batch server hosts and you do not need host preferences.

All the members of the host list should either belong to a single host partition
or not belong to any host partition. Otherwise, job scheduling may be affected
(see ‘Host Partitions’ on page 206).

Default: all batch hosts.

6FKHGXOLQJ�3ROLF\

LSF Batch allows many policies to be defined at the queue level. These affect the order
jobs in the queue are scheduled.

4XHXH�/HYHO�)DLUVKDUH

The concept of queue level fairshare was discussed in ‘Scheduling Policies’ on page 31.
The configuration syntax for this policy is:

FAIRSHARE = USER_SHARES[[username, share] [username, share]]

Note
These are real square brackets, not syntactic notation.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
username is a user login name, a user group name, the reserved word default, or
the reserved word others. share is a positive integer specifying the number of
shares of resources that a user or user group has in the cluster.

The USER_SHARES assignment for a queue is interpreted in the same way as the
USER_SHARES assignment in a host partition definition in the lsb.hosts file. See
‘Host Partitions’ on page 206 for explanation of USER_SHARES. In general, a job has a
higher scheduling priority if the job’s owner has more shares, fewer running jobs, has
used less CPU time and has waited longer in the queue.

Note the differences between the following two definitions:

FAIRSHARE = USER_SHARES[[grp1, share1] [grp2, share2]]
FAIRSHARE = USER_SHARES[[grp1, share1] [grp2@, share2]]

The ‘@’ immediately after a user group name means that the shares apply to each
individual user in the user group. Without ‘@’, the shares apply to the user group as a
whole. If you want to further subdivide the shares allocated to a user group, define a
share tree for that group in the lsb.users file. This implements hierarchical fairshare as
discussed in ‘Configuring Hierarchical Fairshare’ on page 117.

See ‘Controlling Fairshare’ on page 113 for examples of fairshare configuration.

Note
Queue level fair share scheduling is an alternative to host partition fair share
scheduling. You cannot use both in the same LSF cluster for the same host(s).

3UHHPSWLYH�6FKHGXOLQJ

The concept of preemptive scheduling was discussed in ‘Preemptive Scheduling’ on
page 32. PREEMPTION takes two possible parameters, PREEMPTIVE and
PREEMPTABLE. The configuration syntax is:

PREEMPTION = PREEMPTIVE[q1 q2 ...] PREEMPTABLE

where [q1,q2 ...] are an optional list of queue names of lower priorities.

Note
These are real square brackets, not syntactic notation.
���

�

If PREEMTIVE is defined, this defines a preemptive queue that will preempt jobs in
[q1, q2, ...]. Jobs in a preemptive queue can preempt jobs from the specified
lower priority queues running on a host by suspending some of them and starting the
higher priority jobs on the host.

If PREEMPTIVE is specified without a list of queue names, then this queue preempts all
lower priority queues.

If the PREEMPTIVE policy is not specified, jobs dispatched from this queue will not
suspend jobs from lower priority queues.

A queue can be specified as being preemptable by defining PREEMPTABLE in the
PREEMPTION parameter of the queue.

Jobs from a preemptable queue can be preempted by jobs in any higher priority queues
even if the higher priority queues do not have PREEMPTIVE defined. A preemptable
queue is complementary to the preemptive queue. You can define a queue that is both
preemptive as well as preemptable by defining both PREEMPTIVE and PREEMPTABLE.
Thus the queue will preempt lower priority queues while it can also be preempted by
higher priority queues.

([FOXVLYH�4XHXH

An exclusive queue is created by specifying EXCLUSIVE in the policies of a queue.

If the EXCLUSIVE policy is specified, this queue performs exclusive scheduling. A job
only runs exclusively if it is submitted to a queue with exclusive scheduling, and the
job is submitted with the bsub -x option. An exclusive job runs by itself on a host—
it is dispatched only to a host with no other batch jobs running.

Once an exclusive job is started on a host, the LSF Batch system locks that host out of
load sharing by sending a request to the underlying LSF so that the host is no longer
available for load sharing by any other task (either interactive or batch) until the
exclusive job finishes.

Because exclusive jobs are not dispatched until a host has no other batch jobs running,
it is possible for an exclusive job to wait indefinitely if no batch server host is ever
completely idle. This can be avoided by configuring some hosts to run only one batch
job at a time; that way the host is certain to have no batch jobs running when the
previous batch job completes, so the exclusive job can be dispatched there.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
The exclusive scheduling policy is specified using the following syntax:

EXCLUSIVE = {Y | N}

0LJUDWLRQ

The MIG parameter controls automatic migration of suspended jobs.

MIG = number
If MIG is specified, then number is the migration threshold in minutes. If a
checkpointable or rerunable job is suspended for more than MIG minutes and
no other job on the same host is being migrated, LSF Batch checkpoints (if
possible) and kills the job. Then LSF Batch restarts or reruns the job on another
suitable host if one is available. If LSF is unable to rerun or restart the job
immediately, the job reverts to PEND status and is requeued with a higher
priority than any submitted job, so it is rerun or restarted before other queued
jobs are dispatched.

The lsb.hosts file can also specify a migration threshold. Jobs are migrated
if either the host or the queue specifies a migration threshold. If MIG is defined
both here and in lsb.hosts, the lower threshold is used.

Jobs that are neither checkpointable nor rerunable are not migrated.

Default: no migration.

4XHXH�/HYHO�3UH��3RVW�([HFXWLRQ�&RPPDQGV

Pre- and post-execution commands can be configured on a per-queue basis. These
commands are run on the execution host before and after a job from this queue is run,
respectively. By configuring appropriate pre- and/or post-execution commands,
various situations can be handled such as:

• Creating and deleting scratch directories for the job

• Assigning jobs to run on specific processors on SMP machines

• Customized scheduling

• License availability checking.
���

�

these
Note that the job-level pre-exec specified with the -E option of bsub is also supported.
In some situations (for example, license checking), it is possible to specify a queue-level
pre-execution command instead of requiring every job be submitted with the -E
option.

The execution commands are specified using the PRE_EXEC and POST_EXEC
keywords; for example:

Begin Queue
QUEUE_NAME = priority
PRIORITY = 43
NICE = 10
PRE_EXEC = /usr/people/lsf/pri_prexec
POST_EXEC = /usr/people/lsf/pri_postexec
End Queue

3UH��3RVW�([HFXWLRQ�&RPPDQG�6HWXS

The following points should be considered when setting up the pre- and post-
execution commands at the queue level.

The entire contents of the configuration line of the pre- and post-execution
commands are run under /bin/sh -c, so shell features can be used in the
command. For example, the following is valid:

PRE_EXEC = /usr/local/lsf/misc/testq_pre >> /tmp/pre.out
POST_EXEC = /usr/local/lsf/misc/testq_post | grep -v "Hey!"

The pre- and post-execution commands are run in /tmp.

Standard input and standard output and error are set to /dev/null. The output
from the pre- and post-execution commands can be explicitly redirected to a file
for debugging purposes.

The PATH environment variable is set to ‘/bin /usr/bin /sbin
/usr/sbin ’.

The pre- and post-execution commands are run under cmd.exe/c. Both the pre-
and post-execution commands are run as the user by default. If you must run
commands as a different user, such as root (to do privileged operations, if

UNIX

NT
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�

 have

ions

on

atch
 is
nd of

r this

r

ution

n
necessary), you can configure the parameter LSB_PRE_POST_EXEC_USER in
the lsf.sudoers file. See ‘The lsf.sudoers File’ on page 189 for details.

Standard input and standard output and error are set to NUL. The output from the
pre- and post-execution commands can be explicitly redirected to a file for
debugging purposes.

The PATH is determined by the setup of the LSF Service.

• If the pre-execution command exits with a non-zero exit code, then it is considered to
failed and the job is requeued to the head of the queue. This feature can be used to
implement customized scheduling by having the pre-execution command fail if condit
for dispatching the job are not met.

• Other environment variables set for the job are also set for the pre- and post-executi
commands.

• When a job is dispatched from a queue which has a pre-execution command, LSF B
will remember the post-execution command defined for the queue from which the job
dispatched. If the job is later switched to another queue or the post-execution comma
the queue is changed, LSF Batch will still run the original post-execution command fo
job.

• When the post-execution command is run, the environment variable,
LSB_JOBEXIT_STAT, is set to the exit status of the job. Refer to the manual page fo
wait(2) for the format of this exit status.

• The post-execution command is also run if a job is requeued because the job’s exec
environment fails to be set up, or if the job exits with one of the queue’s
REQUEUE_EXIT_VALUES (see ‘Automatic Job Requeue’ on page 231). The
environment variable, LSB_JOBPEND, is set if the job is requeued. If the job’s executio
environment could not be set up, LSB_JOBEXIT_STAT is set to 0.

• If both queue and job level pre-execution commands are specified, the job level pre-
execution is run after the queue level pre-execution command.

Default: no pre- and post-execution commands.
���

�

-RE�6WDUWHU

A job starter can be defined for an individual queue to create a specific environment
for submitted jobs prior to execution. The configuration syntax for the job starter
parameter is:

JOB_STARTER = starter [starter] [%USRCMD] [starter]

where the string starter is any executable that can be used to start the job, (i.e., can
accept the job as an input argument). Optionally, additional strings can be specified. A
special string %USRCMD can be used to represent the position of the user’s job in the job
starter command line.

When a batch job is submitted to a queue, LSF Batch holds it in a job file until conditions
are right for it to be executed.

The job file is just a Bourne shell script run by the batch daemon at execution time.

The job file is just a batch file processed by the batch daemon at execution time.

Default: no job starter.

If a job starter is specified, the user commands run after the job starter, so the %USRCMD
string is not usually required. For example, these two job starters will both give the
same results:

JOB_STARTER = csh -c

JOB_STARTER = csh -c %USRCMD

However, the %USRCMD string may be enclosed with quotes or followed by additional
commands. For example:

JOB_STARTER = csh -c “%USRCMD;sleep 10”

In this case, if a user submits a job:
% bsub myjob arguments

the command that actually runs is:
% csh -c “myjob arguments; sleep 10”

UNIX

NT
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�

 to do

.

ob is

ng the
to be

indow
&RQILJXUDEOH�-RE�&RQWURO�$FWLRQV

Job control in LSF Batch refers to some well-known control actions that will cause a
job’s status to change. These actions include:

SUSPEND
Change a running job to SSUSP or USUSP. The default action is to send signal
SIGTSTP for parallel or interactive jobs and SIGSTOP for other jobs.

RESUME
Change a suspended job to RUN status. The default action is to send signal
SIGCONT.

TERMINATE
Terminate a job and possibly cause the job change to EXIT status. The default
action is to send SIGINT first, then send SIGTERM 10 seconds after SIGINT,
then send SIGKILL 10 seconds after SIGTERM. The 10 second interval can be
overridden by the JOB_TERMINATE_INTERVAL in the lsb.params file (see
‘JOB_TERMINATE_INTERVAL’ on page 196 for details).

Note
On Windows NT, actions equivalent to the UNIX signals have been implemented
the default job control actions. Job control messages replace the SIGINT and
SIGTERM signals, but only customized applications will be able to process them
Termination is implemented by the TerminateProcess() system call.

Several situations may require overriding or augmenting the default actions for job
control. For example:

• A distributed parallel application requires that it receive a catchable signal when the j
suspended, resumed or terminated to propagate the signal to remote processes.

• Notification to the user when his/her job is suspended.

• An application holds resources (for example, licenses) that are not freed by suspendi
job. The administrator can set up an action to be performed that causes the license
released before the job is suspended and re-acquired when the job is resumed.

• The administrator wants the job checkpointed before being suspended when a run w
closes.
���

�

wing
It is possible to override the actions used for job control by specifying the
JOB_CONTROLS parameter in the lsb.queues file. The format is:

Begin Queue
.
JOB_CONTROLS = SUSPEND[signal | CHKPNT | command] \

RESUME[signal | command] \
TERMINATE[signal | CHKPNT | command]

.
End Queue

Here, signal is a UNIX signal name (such as, SIGSTOP, SIGTSTP). CHKPNT is a
special action, which causes the system to checkpoint the job. Alternatively, command
specifies an /bin/sh command line to be invoked.

When LSF Batch needs to suspend or resume a job it will invoke the corresponding
action as specified by the SUSPEND or RESUME parameters, respectively.

If the action is a signal, then the signal is sent to the job. If the action is a command, then
the following points should be considered:

• The contents of the configuration line for the action are run with
‘/bin/sh -c’ so you can use shell features in the command.

• The standard input, output, and error of the command are redirected to the NULL device.

• The command is run as the user of the job.

• All environment variables set for the job are also set for the command action. The follo
additional environment variables are set:

LSB_JOBPGIDS - a list of current process group IDs of the job.

LSB_JOBPIDS - a list of current process IDs of the job.

For the SUSPEND action command, the following environment variable is also set:

LSB_SUSP_REASONS - an integer representing a bitmap of suspending reasons as
defined in lsbatch.h.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
The suspending reason can allow the command to take different actions based on the
reason for suspending the job.

The SUSPEND action causes the job state to be changed from RUN state to the USUSP (in
response to bstop) state or the SSUSP (otherwise) state when the action is completed.
The RESUME action causes the job to go from SSUSP or USUSP state to the RUN state
when the action is completed.

If the SUSPEND action is CHKPNT, then the job is checkpointed and then stopped by
sending the SIGSTOP signal to the job automatically.

LSF Batch invokes the SUSPEND action to bring a job into SSUSP or USUSP status in the
following situations:

• when the user or LSF administrator issued an bstop command on the job

• when load condition on the execution host satisfies the suspend condition

• when the queue’s run window closes

• when the job is being preempted by a higher priority job

However, in certain situations you may want to terminate the job instead of calling the
SUSPEND action. For example, you may want to kill jobs if the run window of the
queue is closed. This can be achieved by configuring the queue to invoke the
TERMINATE action instead of SUSPEND by specifying the following parameter:

TERMINATE_WHEN = WINDOW | LOAD | PREEMPT

If the TERMINATE action is CHKPNT, then the job is checkpointed and killed atomically.

If the execution of an action is in progress, no further actions will be initiated unless it
is the TERMINATE action. A TERMINATE action is issued regardless of the current state
of the job.

The following defines a night queue that will kill jobs if the run window closes.

Begin Queue
NAME = night
RUN_WINDOW = 20:00-08:00
���

�

TERMINATE_WHEN = WINDOW
JOB_CONTROLS = TERMINATE[kill -KILL $LS_JOBPGIDS; mail -

s “job $LSB_JOBID killed by queue run window” $USER < /dev/
null]
End Queue

Note that the command line inside an action definition must not be quoted.

LSF Batch invokes the TERMINATE action when a SUSPEND action that is redirected to
TERMINATE with the TERMINATE_WHEN parameter should be invoked, or when the
job reaches its RUNLIMIT , or PROCESSLIMIT.

Since the stdout and stderr of the job control action command are redirected to /
dev/null , there is no direct way of knowing whether the command runs correctly.
You should make sure the command line is correct. If you want to see the output from
the command line for testing purposes, redirect the output to a file inside the command
line.

$XWRPDWLF�-RE�5HTXHXH

A queue can be configured to automatically requeue a job if the job exits with
particular exit value(s). The parameter REQUEUE_EXIT_VALUES is used to specify a
list of exit codes that can cause an exited job to be requeued; for example,

Begin Queue
PRIORITY = 43
REQUEUE_EXIT_VALUES = 99 100
End Queue

This configuration enables jobs that exit with 99 or 100 to be requeued to the head of
the queue from which it was dispatched. When a job is requeued, the output from the
failed run is not saved and no mail is sent. The user will only receive notification when
the job exits with a value different from the values listed in the
REQUEUE_EXIT_VALUES parameter. Additionally, a job terminated by a signal is not
requeued.

Default: Jobs in a queue are not requeued.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
([FOXVLYH�-RE�5HTXHXH

The queue parameter REQUEUE_EXIT_VALUE controls job requeue behaviour. It
defines a series of exit code values. If batch job exit with one of those values, the job
gets requeued. There is a special requeue method called exclusive requeue. If the exit
value is defined as EXCLUDE(value), the job will be requeued when it exits with the
given value, but it will not be dispatched to the same host where it exited with the
value. For example:

Begin Queue
.
REQUEUE_EXIT_VALUES=30 EXCLUDE(20)
HOSTS=hostA hostB hostC
.
End Queue

The job in this queue can be dispatched to hostA, hostB or hostC. If the job exits with
value 30, it will be dispatched on any of hostA, hostB or hostC. If the job exits with value
20 on hostA, when requeued, it will only be dispatched to hostB or hostC. Similarly, if
the job again exits with a value of 20, it will only be dispatched on hostC. Finally, if the
job exits with value 20 on hostC, the job will be pending forever.

Note
If mbatchd is restarted, it will not remember the previous hosts where the job exited
with an exclusive requeue exit code. In this situation it is possible for a job to be
dispatched to hosts on which the job has previously exited with exclusive exit code.

'HIDXOW�+RVW�6SHFLILFDWLRQ�IRU�&38�6SHHG�6FDOLQJ

LSF runs jobs on heterogeneous machines. To set the CPU time limit for jobs in a
platform-independent way, LSF scales the CPU time limit by the CPU factor of the
hosts involved.

The DEFAULT_HOST_SPEC defines a default host or host model that will be used to
normalize the CPU time limit of all jobs, providing consistent behaviour for users.

DEFAULT_HOST_SPEC = host_spec
host_spec must be a host name defined in the lsf.cluster.cluster file, or
a host model defined in the lsf.shared file.
���

�

The CPU time limit defined in this file, or by the user through the bsub -
c cpu_limit option, is interpreted as the maximum number of minutes of CPU
time that a job may run on a host of the default specification. When a job is
dispatched to a host for execution, the CPU time limit is then normalized
according to the execution host’s CPU factor.

If DEFAULT_HOST_SPEC is defined in both the lsb.params file and the
lsb.queues file for an individual queue, the value specified for the queue
overrides the global value. If a user explicitly gives a host specification when
submitting a job, the user specified host or host model overrides the values
defined in both the lsb.params and the lsb.queues files.

Default: DEFAULT_HOST_SPEC in the lsb.params file.

146�)RUZDUG�4XHXHV

To interoperate with NQS, you must configure one or more LSF Batch queues to
forward jobs to remote NQS hosts. An NQS forward queue is an LSF Batch queue with
the parameter NQS_QUEUES defined.

NQS_QUEUES = queue_name@host_name ...
host_name is an NQS host name that can be the official host name or an alias
name known to the LSF master host through gethostbyname(3).
queue_name is the name of an NQS queue on this host. NQS destination queues
are considered for job routing in the order in which they are listed here. If a
queue accepts the job, then it is routed to that queue. If no queue accepts the
job, it remains pending in the NQS forward queue.

The lsb.nqsmaps file (see ‘The lsb.nqsmaps File’ on page 235) must be present
in order for LSF Batch to route jobs in this queue to NQS systems.

Since many features of LSF are not supported by NQS, the following queue
configuration parameters are ignored for NQS forward queues: PJOB_LIMIT,
POLICIES, RUN_WINDOW, DISPATCH_WINDOW, RUNLIMIT, HOSTS, MIG. In
addition, scheduling load threshold parameters are ignored because NQS
does not provide load information about hosts.

Default: undefined.

DESCRIPTION = text
A brief description of the job queue. This information is displayed by the
bqueues -l command. The description can include any characters, including
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
white space. The description can be extended to multiple lines by ending the
preceding line with a back slash ‘\’. The maximum length for the description
is 512 characters.

This description should clearly describe the service features of this queue to
help users select the proper queue for each job.

4XHXH�/HYHO�&KHFNSRLQW�DQG�5HUXQ

A queue can be configured to automatically checkpoint and rerun jobs. Jobs submitted
to this queue do not need to specify checkpoint and rerun options, and wrapper scripts
do not need to be written for job submission executables. The parameters CHKPNT and
RERUNABLE are used to configure the queue-level checkpoint and rerun options.

Note
User commands always take precedence over the configured queue options. Jobs
submitted and modified using the -k, -r, and -kn options override the queues
configured options.

6\QWD[

Begin Queue
QUEUE_NAME = queueName
...
CHKPNT = chkpntDir chkpntPeriod
RERUNNABLE = yes|no # case insensitive
...
End Queue

CHKPNT
Automatic checkpointing is enabled when a checkpoint period
(chkpntPeriod) and checkpoint (chkpntDir) directory is specified after the
CHKPNT parameter.

chkpntDir
The chkpntDir specifies the directory where the checkpoint files are created.
chkpntDir must be string specifying a valid directory.
���

�

chkpntPeriod
The chkpntPeriod specifies a time interval in minutes for automatic
checkpointing. Must be a positive integer.

RERUNNABLE
Automatic job rerun (restart) is enabled when the parameter RERUNNABLE is
set to yes. Rerun is disabled when RERUNNABLE is set to no.

Default: Queues are not configured to checkpoint and rerun jobs.

([DPSOH

The following example defines a queue named myQueue that automatically saves job
checkpoint information in the directory ~/work/chkpnt/ every 10 minutes. The queue is
defined to automatically rerun (restart) jobs.

Begin Queue
QUEUE_NAME = myQueue
...
CHKPNT = ~/work/chkpnt/ 10 # period is 10 minutes
RERUNNABLE = Y # specify a rerunnable queue
...
End Queue

7KH�lsb.nqsmaps�)LOH

The lsb.nqsmaps file contains information on configuring LSF for interoperation
with NQS. This file is optional.

+RVWV

NQS uses a machine identification number (MID) to identify each host in the network
that communicates using the NQS protocol. This MID must be unique and must be the
same in the NQS database of each host in the network. The MID is assigned and put
into the NQS data base using the NQS program nmapmgr(1m) or Cray NQS command
qmgr(8). mbatchd uses the NQS protocol to talk with NQS daemons for routing,
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
monitoring, signalling, and deleting LSF Batch jobs that run on NQS hosts. Therefore,
the MIDs of the LSF master host, and any LSF host that might become the master host
when the current master host is down, must be assigned and put into the NQS
database of each host which may possibly process LSF Batch jobs.

In the mandatory Hosts section, list the MIDs of the LSF master host (and potential
master hosts) and the NQS hosts that are specified in the lsb.queues file. If an NQS
destination queue specified in the lsb.queues file is a pipe queue, the MIDs of all the
destination hosts of this pipe queue must be listed here. If a destination queue of this
pipe queue is itself a pipe queue, the MIDs of the destination hosts of this queue must
also be listed, and so forth.

There are three mandatory keywords in this section:

HOST_NAME
The name of an LSF or NQS host. It can be the official host name or an alias
host name known to the master batch daemon (mbatchd) through
gethostbyname(3).

MID
The machine identification number of an LSF or NQS host. It is assigned by the
NQS administrator to each host communicating using the NQS protocol.

OS_TYPE
The operating system (OS) type of the NQS host. At present, its value can be
one of ULTRIX, HPUX, AIX, SOLARIS, SUNOS, IRIX, OSF1, CONVEX or
UNICOS. It is used by mbatchd to deliver the correct signals to the LSF Batch
jobs running on this NQS host. An incorrect OS type would cause
unpredictable results. If the host is an LSF host, the type is specified by the
type field of the Host section in the lsf.cluster.cluster file. OS_TYPE
is ignored; ‘-’ must be used as a placeholder.

Begin Hosts
HOST_NAME MID OS_TYPE
cray001 1 UNICOS #NQS host, must specify OS_TYPE
sun0101 2 SOLARIS #NQS host
sgi006 3 IRIX #NQS host
hostA 4 - #LSF host; OS_TYPE is ignored
hostD 5 - #LSF host
���

�

hostC 6 - #LSF host
End Hosts

8VHUV

LSF assumes shared and uniform user accounts on all of the LSF hosts. However, if the
user accounts on NQS hosts are not the same as on LSF hosts, account mapping is
needed so that the network server on the remote NQS host can take on the proper
identity attributes. The mapping is performed for all NQS network conversations. In
addition, the user name and the remote host name may need to match an entry either
in the .rhosts file in the user’s home directory, or in the /etc/hosts.equiv file, or
in the /etc/hosts.nqs file on the server host. For Cray NQS, the entry may be either
in the .rhosts file or in the .nqshosts file in the user’s home directory.

This optional section defines the user name mapping from the LSF master host to each
of the NQS hosts listed in the Host section above, that is, the hosts on which the jobs
routed by LSF Batch may run. There are two mandatory keywords:

FROM_NAME
The name of an LSF Batch user. It is a valid login name on the LSF master host.

TO_NAME
A list of user names on NQS hosts to which the corresponding FROM_NAME is
mapped. Each of the user names is specified in the form username@hostname.
The hostname is the official name or an alias name of an NQS host, while the
username is a valid login name on this NQS host. The TO_NAME of a user on a
specific NQS host should always be the same when the user’s name is mapped
from different hosts. If no TO_NAME is specified for an NQS host, LSF Batch
assumes that the user has the same user name on this NQS host as on an LSF
host.

Begin Users
FROM_NAME TO_NAME
user3 (user3l@cray001 luser3@sgi006)
user1 (suser1@cray001) # assumed to be user1@sgi006
End Users

If a user is not specified in the lsb.nqsmaps file, jobs are sent to NQS hosts
with the same name the user has in LSF.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�%DWFK�&RQILJXUDWLRQ�5HIHUHQFH�
���

$� 7URXEOHVKRRWLQJ�DQG�(UURU�
0HVVDJHV

This chapter describes some common problems with LSF and LSF Batch operations,
answers some frequently asked questions, and provides some instructions for solving
problems.

(UURU�/RJ�0HVVDJHV

When something goes wrong, the daemons almost always log an error message. The
first step is to find the appropriate log and see whether there are any messages.

Specific error log messages are listed in ‘Error Messages’ on page 245.

)LQGLQJ�WKH�(UURU�/RJV

Error messages of LSF servers are logged in either the syslog(3) or specified files.
This is determined by the LSF_LOGDIR definition in the lsf.conf file. For complete
instructions on finding the LSF server logs, see ‘Managing Error Logs’ on page 45.

If you configure LSF to log daemon messages using syslog, the destination
file is determined by the syslog configuration. On most systems, you can
find out which file the LSF messages are logged in with the command:

grep daemon /etc/syslog.conf

Once you have found the syslog file, you can select the LSF error messages
with the command:

UNIX
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7URXEOHVKRRWLQJ�DQG�(UURU�0HVVDJHV$
egrep ’lim|res|batchd’ syslog_file

Look at the /etc/syslog.conf file and the manual page for syslog or
syslogd for help in finding the system logs.

When searching for log messages from LSF servers, you are more likely to find them
on the remote machine where LSF put the task than on your local machine where the
command was given.

LIM problems are usually logged on the master host. Run lsid to find the master host,
and check syslog or the lim.log. hostname file on the master host. The
res.log. hostname file contains messages about RES problems, execution problems
and setup problems for LSF. Most problems with interactive applications are logged in
the remote machine’s log files.

Errors from LSF Batch are logged either in the mbatchd.log.hostname file on the
master host, or the sbatchd.log.hostname file on the execution host. The bjobs or
bhist command tells you the execution host for a specific job.

Most LSF log messages include the name of an internal LSF function to help the
developers locate problems. Many error messages can be generated in more than one
place, so it is important to report the entire error message when you ask for technical
support.

6KDUHG�)LOH�$FFHVV

A frequent problem with LSF is non-accessible files due to a non-uniform
file space. If a task is run on a remote host where a file it requires cannot be
accessed using the same name, an error results. Almost all interactive LSF
commands fail if the user’s current working directory cannot be found on
the remote host.

If you are running NFS, rearranging the NFS mount table may solve the
problem. If your system is running the automount server, LSF tries to map
the filenames, and in most cases it succeeds. If shared mounts are used, the
mapping may break for those files. In such cases, specific measures need to
be taken to get around it.

UNIX
���

$

The automount maps must be managed through NIS. When LSF tries to
map filenames, it assumes that automounted file systems are mounted
under the /tmp_mnt directory.

To share files among NT machines, set up a share on the server and access
it from the client. You can access files on the share either by specifying a
UNC path (\\server\share\path) or connecting the share to a local
drive name and using a drive:\path syntax. Using UNC is
recommended because drive mappings may be different across machines,
while UNC allows you to unambiguously refer to a file on the network.

6KDUHG�)LOHV�$FURVV�81,;�DQG�17

For file sharing across UNIX and NT, you require a third party NFS product on NT to
export directories from NT to UNIX.

&RPPRQ�/6)�%DVH�3UREOHPV

This section lists some other common problems with the LIM, the RES and interactive
applications.

/,0�'LHV�4XLHWO\

Run the following command to check for errors in the LIM configuration files.

% lsadmin ckconfig -v

This displays most configuration errors. If this does not report any errors, check in the
LIM error log.

/,0�8QDYDLODEOH

Sometimes the LIM is up, but executing the lsload command prints the following
error message:

NT
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7URXEOHVKRRWLQJ�DQG�(UURU�0HVVDJHV$
Communication time out.

If the LIM has just been started, this is normal, because the LIM needs time to get
initialized by reading configuration files and contacting other LIMs.

If the LIM does not become available within one or two minutes, check the LIM error
log on the local host.

When the local LIM is running but there is no master LIM in the cluster, LSF
applications display the following message:

Cannot locate master LIM now, try later”.

Check the LIM error logs on the first few hosts listed in the “Host” section of the
lsf.cluster.cluster file.

5(6�'RHV�1RW�6WDUW

Check the RES error log.

If the RES is unable to read the lsf.conf file and does not know where to
write error messages, it logs errors into syslog(3).

If the RES is unable to read the lsf.conf file and does not know where to
write error messages, it logs errors into C:\temp.

8VHU�3HUPLVVLRQ�'HQLHG

If remote execution fails with the following error message, the remote host could not
securely determine the user ID of the user requesting remote execution.

User permission denied.

Check the RES error log on the remote host; this usually contains a more detailed error
message.

If you are not using an identification daemon (LSF_AUTH is not defined in the
lsf.conf file), then all applications that do remote executions must be owned by
root with the setuid bit set. This can be done as follows.

UNIX

NT
���

$

% chmod 4755 filename

If the binaries are on an NFS-mounted file system, make sure that the file system is not
mounted with the nosuid flag.

If you are using an identification daemon (defined in the lsf.conf file by
LSF_AUTH), inetd must be configured to run the daemon. The identification daemon
must not be run directly.

If LSF_USE_HOSTEQUIV is defined in the lsf.conf file, check if /etc/
hosts.equiv or HOME/.rhosts on the destination host has the client host name in
it. Inconsistent host names in a name server with /etc/hosts and /etc/
hosts.equiv can also cause this problem.

On SGI hosts running a name server, you can try the following command to tell the
host name lookup code to search the /etc/hosts file before calling the name server.

% setenv HOSTRESORDER “local,nis,bind”

1RQ�XQLIRUP�)LOH�1DPH�6SDFH

A command may fail with the following error message due to a non-uniform file name
space.

chdir(...) failed: no such file or directory

You are trying to execute a command remotely, where either your current working
directory does not exist on the remote host, or your current working directory is
mapped to a different name on the remote host.

If your current working directory does not exist on a remote host, you should not
execute commands remotely on that host.

If the directory exists, but is mapped to a different name on the remote host,
you have to create symbolic links to make them consistent.

LSF can resolve most, but not all, problems using automount. The
automount maps must be managed through NIS. Follow the instructions in
your Release Notes for obtaining technical support if you are running
automount and LSF is not able to locate directories on remote hosts.

UNIX
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7URXEOHVKRRWLQJ�DQG�(UURU�0HVVDJHV$
&RPPRQ�/6)�%DWFK�3UREOHPV

This section lists some common problems with LSF Batch. Most problems are due to
incorrect installation or configuration. Check the mbatchd and sbatchd error log
files; often the log messages points directly to the problem.

%DWFK�'DHPRQV�'LH�4XLHWO\

First, check the sbatchd and mbatchd error logs. Try running the following
command to check the configuration.

% badmin ckconfig

This reports most errors. You should also check if there is any email from LSF Batch in
the LSF administrator’s mailbox. If the mbatchd is running but the sbatchd dies on
some hosts, it may be because mbatchd has not been configured to use those hosts. See
‘Host Not Used By LSF Batch’ on page 244.

sbatchd�6WDUWV�%XW�mbatchd�'RHV�1RW

Check whether LIM is running. You can test this by running the lsid command. If
LIM is not running properly, follow the suggestions in this chapter to fix the LIM first.
You should make sure that LSF and LSF Batch are using the same lsf.conf file. Note
that it is possible that mbatchd is temporarily unavailable because the master LIM is
temporarily unknown, causing the following error message.

sbatchd: unknown service

Check whether services are registered properly. See ‘Registering LSF Service Ports’ on
page 84 of the LSF Installation Guide.

+RVW�1RW�8VHG�%\�/6)�%DWFK

If you configure a list of server hosts in the Host section of the lsb.hosts file,
mbatchd allows sbatchd to run only on the hosts listed. If you try to configure an
unknown host in the HostGroup or HostPartition sections of the lsb.hosts file,
or as a HOSTS definition for a queue in the lsb.queues file, mbatchd logs the
following message.
���

$

mbatchd on host: LSB_CONFDIR/cluster/configdir/file(line #):
Host hostname is not used by lsbatch;

ignored

If you start sbatchd on a host that is not known by mbatchd, mbatchd rejects the
sbatchd. The sbatchd logs the following message and exits.

This host is not used by lsbatch system.

Both of these errors are most often caused by not running the following commands, in
order, after adding a host to the configuration.

lsadmin reconfig

badmin reconfig

You must run both of these before starting the daemons on the new host.

(UURU�0HVVDJHV

The following error messages are logged by the LSF daemons, or displayed by the
following commands.

lsadmin ckconfig

badmin ckconfig

LSF daemon message logs are described in ‘Managing Error Logs’ on page 45.

*HQHUDO�(UURUV

The messages listed in this section may be generated by any LSF daemon.

can’t open file: error
The daemon could not open the named file for the reason given by error.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7URXEOHVKRRWLQJ�DQG�(UURU�0HVVDJHV$
This error is usually caused by incorrect file permissions or missing files. All
directories in the path to the configuration files must have ‘x’ permission for
the LSF administrator, and the actual files must have ‘r’ permission. Missing
files could be caused by incorrect path names in the lsf.conf file, running
LSF daemons on a host where the configuration files have not been installed,
or having a symbolic link pointing to a nonexistent file or directory.

file(line): malloc failed
Memory allocation failed. Either the host does not have enough available
memory or swap space, or there is an internal error in the daemon. Check the
program load and available swap space on the host; if the swap space is full,
you must add more swap space or run fewer (or smaller) programs on that
host.

auth_user: getservbyname(ident/tcp) failed: error;
ident must be registered in services

LSF_AUTH=ident is defined in the lsf.conf file, but the ident/tcp
service is not defined in the services database. Add ident/tcp to the services
database, or remove LSF_AUTH from the lsf.conf file and setuid root
those LSF binaries that require authentication.

auth_user: operation(<host>/<port>) failed: error
LSF_AUTH=ident is defined in the lsf.conf file, but the LSF daemon failed
to contact the ident daemon on host. Check that ident is defined in host’s
inetd.conf and the ident daemon is running on host.

auth_user: Authentication data format error (rbuf=<data>) from <host>/<port>

auth_user: Authentication port mismatch (...) from <host>/<port>
LSF_AUTH=ident is defined in the lsf.conf file, but there is a protocol
error between LSF and the ident daemon on host. Make sure the ident
daemon on host is configured correctly.

userok: Request from bad port (<portno>), denied
LSF_AUTH is not defined, and the LSF daemon received a request that
originates from a non-privileged port. The request is not serviced.

Set the LSF binaries (for example, lsrun) to be owned by root with the
setuid bit set, or define LSF_AUTH=ident and set up an ident server on all
hosts in the cluster. If the binaries are on an NFS-mounted file system, make
sure that the file system is not mounted with the nosuid flag.
���

$

userok: Forged username suspected from <host>/<port>: <claimed user>/<actual user>

The service request claimed to come from user claimed user but ident
authentication returned that the user was actually actual user. The request
was not serviced.

userok: ruserok(<host>,<uid>) failed
LSF_USE_HOSTEQUIV is defined in the lsf.conf file, but host has not been
set up as an equivalent host (see /etc/host.equiv), and user uid has not
set up a .rhosts file.

init_AcceptSock: RES service(res) not registered, exiting

init_AcceptSock: res/tcp: unknown service, exiting

initSock: LIM service not registered. See LSF Guide for help

initSock: Service lim/udp is unknown. Read LSF Guide for help

get_ports: <serv> service not registered

The LSF services are not registered. See ‘Registering LSF Service Ports’ on
page 84 of the LSF Installation Guide.

init_AcceptSock: Can’t bind daemon socket to port <port>: error, exiting

init_ServSock: Could not bind socket to port <port>: error

These error messages can occur if you try to start a second LSF daemon (for
example, RES is already running, and you execute RES again). If this is the
case, and you want to start the new daemon, kill the running daemon or use
the lsadmin or badmin commands to shut down or restart the daemon.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7URXEOHVKRRWLQJ�DQG�(UURU�0HVVDJHV$
&RQILJXUDWLRQ�(UURUV

The messages listed in this section are caused by problems in the LSF configuration
files. General errors are listed first, and then errors from specific files.

file(line): Section name expected after Begin; ignoring section

file(line): Invalid section name name; ignoring section

The keyword begin at the specified line is not followed by a section name, or
is followed by an unrecognized section name.

file(line): section section: Premature EOF
The end of file was reached before reading the end section line for the
named section.

file(line): keyword line format error for section section; Ignore this section
The first line of the section should contain a list of keywords. This error is
printed when the keyword line is incorrect or contains an unrecognized
keyword.

file(line): values do not match keys for section section; Ignoring line
The number of fields on a line in a configuration section does not match the
number of keywords. This may be caused by not putting () in a column to
represent the default value.

file: HostModel section missing or invalid

file: Resource section missing or invalid

file: HostType section missing or invalid

The HostModel, Resource, or HostType section in the lsf.shared file is
either missing or contains an unrecoverable error.

file(line): Name name reserved or previously defined. Ignoring index
The name assigned to an external load index must not be the same as any built-
in or previously defined resource or load index.
���

$

file(line): Duplicate clustername name in section cluster.
Ignoring current line

A cluster name is defined twice in the same lsf.shared file. The second
definition is ignored.

file(line): Bad cpuFactor for host model model. Ignoring line
The CPU factor declared for the named host model in the lsf.shared file is
not a valid number.

file(line): Too many host models, ignoring model name
You can declare a maximum of 25 host models in the lsf.shared file.

file(line): Resource name name too long in section resource.
Should be less than 40 characters. Ignoring line

The maximum length of a resource name is 39 characters. Choose a shorter
name for the resource.

file(line): Resource name name reserved or previously defined.
Ignoring line.

You have attempted to define a resource name that is reserved by LSF or
already defined in the lsf.shared file. Choose another name for the
resource.

file(line): illegal character in resource name: name, section resource.
Line ignored.

Resource names must begin with a letter in the set [a-zA-Z], followed by
letters, digits or underscores [a-zA-Z0-9_].

/,0�0HVVDJHV

The following messages are logged by the LIM:

main: LIM cannot run without licenses, exiting
The LSF software license key is not found or has expired. Check that FLEXlm
is set up correctly, or contact your LSF technical support.

main: Received request from unlicensed host <host>/<port>
LIM refuses to service requests from hosts that do not have licenses. Either
your LSF license has expired, or you have configured LSF on more hosts than
your license key allows.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7URXEOHVKRRWLQJ�DQG�(UURU�0HVVDJHV$
initLicense: Trying to get license for LIM from source
<LSF_CONFDIR/license.dat>

getLicense: Can’t get software license for LIM from license
file <LSF_CONFDIR/license.dat>: feature not yet available.

Your LSF license is not yet valid. Check whether the system clock is correct.

findHostbyAddr/<proc>: Host <host>/<port> is unknown by
<myhostname>

function: Gethostbyaddr_(<host>/<port>) failed: error

main: Request from unknown host <host>/<port>: error

function: Received request from non-LSF host <host>/<port>

The daemon does not recognize host as an LSF host. The request is not
serviced. These messages can occur if host was added to the configuration
files, but not all the daemons have been reconfigured to read the new
information. If the problem still occurs after reconfiguring all the daemons,
check whether host is a multi-addressed host. See “Host Naming” in the LSF
Installation Guide.

rcvLoadVector: Sender (<host>/<port>) may have different config?

MasterRegister: Sender (host) may have different config?
LIM detected inconsistent configuration information with the sending LIM.
Run the following command so that all the LIMs have the same configuration
information.

% lsadmin reconfig

Note any hosts that failed to be contacted.

rcvLoadVector: Got load from client-only host <host>/<port>.
Kill LIM on <host>/<port>

A LIM is running on an LSF client host. Run the following command, or go to
the client host and kill the LIM daemon.

% lsadmin limshutdown host
���

$

saveIndx: Unknown index name <name> from ELIM
LIM received an external load index name that is not defined in the
lsf.shared file. If name is defined in lsf.shared, reconfigure the LIM.
Otherwise, add name to the lsf.shared file and reconfigure all the LIMs.

saveIndx: ELIM over-riding value of index <name>
This is a warning message. The ELIM sent a value for one of the built-in index
names. LIM uses the value from ELIM in place of the value obtained from the
kernel.

getusr: Protocol error numIndx not read (cc=num): error

getusr: Protocol error on index number (cc=num): error

Protocol error between ELIM and LIM. See ‘Changing LIM Configuration’ on
page 55 for a description of the protocol.

5(6�0HVVDJHV

These messages are logged by the RES.

doacceptconn: getpwnam(<username>@<host>/<port>) failed: error

doacceptconn: User <username> has uid <uid1> on client host
<host>/<port>, uid <uid2> on RES host; assume bad user

authRequest: username/uid <userName>/<uid>@<host>/<port> does not exist

authRequest: Submitter’s name <clname>@<clhost> is different
from name <lname> on this host

RES assumes that a user has the same userID and username on all the LSF
hosts. These messages occur if this assumption is violated. If the user is
allowed to use LSF for interactive remote execution, make sure the user’s
account has the same userID and username on all LSF hosts.

doacceptconn: root remote execution permission denied
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7URXEOHVKRRWLQJ�DQG�(UURU�0HVVDJHV$
authRequest: root job submission rejected

Root tried to execute or submit a job but LSF_ROOT_REX is not defined in the
lsf.conf file.

resControl: operation permission denied, uid = <uid>
The user with user ID uid is not allowed to make RES control requests. Only
the LSF manager, or root if LSF_ROOT_REX is defined in lsf.conf, can make
RES control requests.

resControl: access(respath, X_OK): error
The RES received a reboot request, but failed to find the file respath to re-
execute itself. Make sure respath contains the RES binary, and it has
execution permission.

/6)�%DWFK�0HVVDJHV

The following messages are logged by the mbatchd and sbatchd daemons:

renewJob: Job <jobId>: rename(<from>,<to>) failed: error
mbatchd failed in trying to re-submit a rerunnable job. Check that the file
from exists and that the LSF administrator can rename the file. If from is in an
AFS directory, check that the LSF administrator’s token processing is properly
setup (see ‘Installation on AFS’ on page 97 of the LSF Installation Guide).

logJobInfo_: fopen(<logdir/info/jobfile>) failed: error

logJobInfo_: write <logdir/info/jobfile> <data> failed: error

logJobInfo_: seek <logdir/info/jobfile> failed: error

logJobInfo_: write <logdir/info/jobfile> xdrpos <pos> failed: error

logJobInfo_: write <logdir/info/jobfile> xdr buf len <len> failed: error

logJobInfo_: close(<logdir/info/jobfile>) failed: error

rmLogJobInfo: Job <jobId>: can’t unlink(<logdir/info/jobfile>): error

rmLogJobInfo_: Job <jobId>: can’t stat(<logdir/info/jobfile>): error
���

$

readLogJobInfo: Job <jobId> can’t open(<logdir/info/jobfile>): error

start_job: Job <jobId>: readLogJobInfo failed: error

readLogJobInfo: Job <jobId>: can’t read(<logdir/info/jobfile>) size size:
error

initLog: mkdir(<logdir/info>) failed: error

<fname>: fopen(<logdir/file> failed: error

getElogLock: Can’t open existing lock file <logdir/file>: error

getElogLock: Error in opening lock file <logdir/file>: error

releaseElogLock: unlink(<logdir/lockfile>) failed: error

touchElogLock: Failed to open lock file <logdir/file>: error

touchElogLock: close <logdir/file> failed: error

mbatchd failed to create, remove, read, or write the log directory or a file in
the log directory, for the reason given in error. Check that LSF managerid
has read, write, and execute permissions on the logdir directory.

If logdir is on AFS, check that the instructions in ‘Installation on AFS’ on
page 97 of the LSF Installation Guide have been followed. Do fs la to verify
that the LSF administrator owns logdir and that the directory has the correct
acl.

replay_newjob: File <logfile> at line <line>: Queue <queue>
not found, saving to queue <lost_and_found>

replay_switchjob: File <logfile> at line <line>: Destination
queue <queue> not found, switching to queue <lost_and_found>

When mbatchd was reconfigured, jobs were found in queue but that queue
is no longer in the configuration.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7URXEOHVKRRWLQJ�DQG�(UURU�0HVVDJHV$
replay_startjob: JobId <jobId>: exec host <host> not found,
saving to host <lost_and_found>

When mbatchd was reconfigured, the event log contained jobs dispatched to
host, but that host is no longer configured to be used by LSF Batch.

do_restartReq: Failed to get hData of host <hostname>/<hostaddr>
mbatchd received a request from sbatchd on host hostname, but that host
is not known to mbatchd. Either the configuration file has been changed but
mbatchd has not been reconfigured to pick up the new configuration, or
hostname is a client host but the sbatchd daemon is running on that host.
Run the following command to reconfigure the mbatchd or kill the sbatchd
daemon on hostname.

% badmin reconfig
���

%� /6)�'LUHFWRULHV

This table lists the directories used by the LSF system, their modes and contents.

7DEOH�����/6)�'LUHFWRULHV

'LUHFWRU\ 0RGH &RQWHQWV

$LSB_CONFDIR
$LSB_CONFDIR/*

755 LSF Batch configuration files, must be owned by
the primary LSF administrator, and shared by all
potential master hosts

$LSB_SHAREDIR/
cluster/logdir

755 LSF Batch accounting files, must be owned by
the primary LSF administrator, and shared by all
potential master hosts

$LSB_LOCALDIR 755 Local directory, on the master host, owned by
the primary LSF administrator, used to store the
primary copy of LSF Batch event logs

$LSF_BINDIR 755 User commands, must allow setuid to root,
shared by all hosts of the same type

$LSF_CONFDIR 755 LSF cluster configuration files, must be owned
by the primary LSF administrator, and shared by
all LSF server hosts

$LSF_ENVDIR 755 lsf.conf file, must be owned by root

$LSF_INCLUDEDIR 755 Header files lsf/lsf.h and lsf/lsbatch.h

$LSF_INDEP 755 Host type independent files shared by all hosts

$LSF_LIBDIR 755 LSF libraries, shared by all hosts of the same type

$LSF_LOGDIR 1777 Server error logs, must be owned by root

$LSF_MACHDEP 755 Host type dependent files shared by all hosts of
the same type

$LSF_MANDIR 755 LSF man pages shared by all hosts
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�'LUHFWRULHV%
$LSF_MISC 755 Examples and other miscellaneous files shared
by all hosts

$LSF_SERVERDIR 755 Server binaries, must be owned by root, and
shared by all hosts of the same type

$XLSF_APPDIR 755 Window application resource files, shared by all
hosts

$XLSF_UIDDIR 755 GUI UID files, shared by all hosts of the same
type

7DEOH�����/6)�'LUHFWRULHV

'LUHFWRU\ 0RGH &RQWHQWV
���

&� 6DPSOH�6\VWHP�6XSSRUW

This section describes how LSF can be configured to support specific systems. Several
systems are discussed: IRIX 6 processor sets, Solaris 2.6 processor sets, IBM SP-2, Cray
Research NQS, and Atria Clearcase.

,5,;���3URFHVVRU�6HWV

IRIX 6 allows the processors in a multiprocessor system to be divided into groups of
processors call processor sets. IRIX 6 provides facilities to allow a user to define
processor sets, and to run processes onto specific processor sets.

The pset(1M) command allows administrators to set up and manipulate processor
sets and associate processes with sets. Once a process is associated with a processor set,
the process and all its children will be scheduled only on the processors in that set. The
definition of the processor set can be dynamically changed to increase or reduce the
number of processors a process can be scheduled on.

LSF can be made to interface with processor sets by using pset(1M) in the queue-level
pre- and post-execution commands (see ‘Queue-Level Pre-/Post-Execution Commands’ on
page 224). This allows batch jobs to be assigned to certain processors.

Note
Since the pset command must be run as root but, by default, queue-level pre- and
post- execution commands are run as the user that submitted the command, you must
define LSB_PRE_POST_EXEC_USER=root in /etc/lsf.sudoers. See ‘The
lsf.sudoers File’ on page 189 for details.

The following gives examples on how to handle different processor allocation
situations for an 8-processor machine.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

6DPSOH�6\VWHP�6XSSRUW&
7LPH�%DVHG�3URFHVVRU�$OORFDWLRQ

During the day you want to ensure that batch jobs only use four processors with the
remaining four dedicated for interactive users. During the night you want the batch
jobs to be able to use all processors.

This can be accomplished by:

Step 1 Create a ‘batch’ processor set and an ‘interactive’ processor set with half the
processors in each set. This can be done by setting up an /etc/pssettab file
as follows:

<symbolic name> <pset id> <processor list>
#
batch 100 0,1,2,3
interactive 101 4,5,6,7

Run the pset command as root to tell the operating system to read the
pssettab file:

pset -i -v

Step 2 All batch queues should specify the following PRE_EXEC parameter:

PRE_EXEC = pset -p $LS_JOBPID batch

The LS_JOBPID will be set to the process identifier of the batch job process.
The pset command will tell IRIX to schedule that process and any of its
children in the batch processor set.

Step 3 Set up two cron jobs one of which runs every morning at 8 a.m. and the other
every evening at 6 p.m. The cron job running at 8 a.m. should execute the
command:

Move processors 4,5,6,7 out of the batch processor set
pset -s batch \!4,5,6,7

The cron job running at 6 p.m. should execute the command:

Move processors 4,5,6,7 into the batch processor set.
pset -s batch +4,5,6,7
���

&

8VHU�%DVHG�3URFHVVRU�$OORFDWLRQ

You want to give a particular user (Jane) exclusive access to one processor if she has
jobs to run. Otherwise, users should be able to use all eight processors for batch jobs.

This can be accomplished by:

Step 1 Create a processor set called ‘excl’ and another processor set ‘batch’ for normal
batch jobs. The ‘batch’ processor set can initially contain all processors and the
‘excl’ set contains only processor 0.

Step 2 Create a queue that will only accept jobs from Jane. The pre- and post-
execution commands can be used to shuffle processors between processor sets
such that Jane will get exclusive access to a processor:

Begin Queue
QUEUE_NAME = exclusive
PRIORITY = 43
USERS = jane
Move processor 0 from batch processor set to excl processor set
Associate the job with the excl set.
PRE_EXEC = pset -s excl +0; pset -s batch -0; pset -p $LS_JOBPID excl
#Move processor 0 back to the batch processor set
POST_EXEC = pset -s excl -0; pset -s batch +0
DESCRIPTION = Provides exclusive access to a processor for Jane’s jobs
End Queue

Other queues should have their pre-execution command set to:

PRE_EXEC = pset -p $LS_JOBPID batch

2WKHU�6LWXDWLRQV

More complicated situations can be handled by using scripts in the pre- and post-
execution commands which check for other conditions. For example in the above
‘User-Based Processor Allocation’ case, if you wanted to give Jane up to four processors
to use (but not more), the pre-execution script could use pset to determine how many
processors were already in the ‘excl’ set and move an additional processor from the
‘batch’ set into the ‘excl’ set until the ‘excl’ set has four processors.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

6DPSOH�6\VWHP�6XSSRUW&
6XSSRUW�IRU�6RODULV�3URFHVVRU�6HWV

Solaris 2.6 allows the processors in a multiprocessor system to be divided into groups
of processors call processor sets. It provides facilities to allow a user to define processor
sets, and to run processes on specific processor sets.

The psrset(1M) command allows administrators to set up, manipulate, and
associate processes with processor sets. Once a process is associated with a processor
set, the process and all its children will be scheduled on the processors in that set. The
definition of the processor can be dynamically changed to increase or reduce the
number of processors on which a process can be scheduled.

LSF can be made to interface with processor sets by using psrset(1M) in the queue-
level pre- and post-execution commands (see ‘Queue-Level Pre-/Post-Execution
Commands’ on page 224 for detailed information). This allows batch jobs to be
dispatched onto certain processors.

Note
Since the psrset (1M) command must be run as root but, by default, queue-level
pre- and post-execution commands are run as the user that submitted the command,
you must define LSB_PRE_POST_EXEC_USER=root in /etc/lsf.sudoers.
See ‘The lsf.sudoers File’ on page 189 for more details.

The following gives examples of how to handle different processor allocation
situations for an 8-processor machine.

7LPH�%DVHG�3URFHVVRU�$OORFDWLRQ

Suppose that during the day, you want to ensure that batch jobs only use 4 processors
with the remaining 4 dedicated for interactive users. During the night, you want the
batch jobs to be able to use all processors. This can be accomplished by using the
following procedure:

Step 1 Create a processor set with 4 processors (0,1,2,3) for batch jobs—use the
following commands (assuming that no processor set has yet been defined, the
processor set id will start from 1).

%psrset -c 0 # create a processor set. check the
processor set id from the print out.
���

&

processor 0: was not assigned, now 1
%psrset -a 1 1 # put processor 1 into processor set 1.
processor 1: was not assigned, now 1
%psrset -a 1 2 # put processor 2 into processor set 1.
processor 2: was not assigned, now 1
%psrset -a 1 3 # put processor 3 into processor set 1.
processor 3: was not assigned, now 1

Step 2 Create another processor set with 4 processor (4,5,6,7) for interactive jobs—use
the following commands.

%psrset -c 4 # create a processor set. check the
processor set id from the print out.
processor 4: was not assigned, now 2
%psrset -a 2 5 # put processor 5 into processor set 2.
processor 5: was not assigned, now 2
%psrset -a 2 6 # put processor 6 into processor set 2.
processor 6: was not assigned, now 2
%psrset -a 2 7 # put processor 7 into processor set 2.
processor 7: was not assigned, now 2

Step 3 All batch queues should specify the following PRE_EXEC parameter:

PRE_EXEC = psrset -b 1 $LS_JOBPID

The LS_JOBPID will be set to the process identifier of the batch job process.
The psrset command will tell the system to schedule that process and any of
its children in the batch processor set.

Step 4 Interactive queues should specify the following PRE_EXEC parameter:

PRE_EXEC = psrset -b 2 $LS_JOBPID

The LS_JOBPID will be set to the process identifier of the interactive job
process. The psrset command will tell the system to schedule that process
and any of its children in the interactive processor set.

Step 5 Set up two cron jobs, one of which runs every morning at 8 a.m., and the other
every evening at 6 p.m. The cron job running at 8 a.m. should execute the
following commands:
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

6DPSOH�6\VWHP�6XSSRUW&
Move processors 4,5,6,7 out of the batch processor set.
psrset -r 4
psrset -r 5
psrset -r 6
psrset -r 7

The cron job running at 6 p.m. should execute the commands:

Move processors 4,5,6,7 into the batch processor set.
psrset -a 1 4
psrset -a 1 5
psrset -a 1 6
psrset -a 1 7

Alternatively, you can use LSF JobScheduler to run this periodic job.

8VHU�%DVHG�3URFHVVRU�$OORFDWLRQ

Suppose you want to give a particular user (Bob) exclusive access to one processor if
he has jobs to run. Otherwise, users should be able to use all 8 processors for batch jobs.
This can be accomplished by:

Step 1 Create a processor set 3 and leave it empty using the following commands:

%psrset -c 0 # create a processor set. check the
processor set id from the print out.
processor 0: was 1, now 3
%psrset -a 1 0 # release processor 0 from processor set
3, and put it back to the processor set 1.
processor 0: was 3, now 1

Step 2 Create a queue that will only accept jobs from Bob. The pre- and post-
execution commands can be used to shuffle processors between processor sets
such that Bob will get exclusive access to a processor.

Begin Queue
QUEUE_NAME = exclusive
PRIORITY = 43
USERS = bob
Move processor 0 from batch processor set 1 to
���

&

exclusive processor set 3
associate the job with the exclusive set
PRE_EXEC = /usr/local/lsf/etc/procset
$LSB_JOBPID
Move processor 0 back to the batch processor set
POST_EXEC = /usr/local/lsf/etc/procset
DESCRIPTION = Provide an exclusive access to a
processor for Bob’s jobs
End Queue

The sample script procset is included in examples/solaris-pset directory of the
distribution.

2WKHU�6LWXDWLRQV

More complicated situations can be handled by using scripts in the pre- and post-
execution commands which check for other condition. For example in the above ’User-
Based Processor Allocation’ case, if you wanted to give Bob up to 4 processors to use
(but not more), the pre-execution script could use psrset (1M) to determine how many
processors were already in processor set 3 and move an additional processor from the
batch processor set 1 into processor set 3 until processor set 3 has 4 processors.
Remember to release the processors to the batch processor set 1.

,%0�63���6XSSRUW

An IBM SP-2 system consists of multiple nodes running AIX. The system can be
configured with a high-performance switch to allow high bandwidth, low latency
communication between the nodes. The allocation of the switch to jobs as well as the
division of nodes into pools is controlled by the SP-2 Resource Manager.

IBM’s Parallel Operating Environment (POE) interfaces with the Resource Manager to
allow users to run parallel jobs requiring dedicated access to the high performance
switch.

The following are provided in LSF to support POE jobs running under LSF:
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

6DPSOH�6\VWHP�6XSSRUW&
• A poejob script which translates the nodes allocated by LSF Batch into an
appropriate host list and environment variables for use by POE. The poejob script
also causes the job to be requeued, if the request for dedicated access to the switch
fails.

• An external LIM (ELIM) which contacts the SP-2 Resource Manager to determine
which pool each node is in and the status of the high-performance switch. Two
new load indices, pool and lock, are introduced to represent the pool the node is
in and whether the switch is locked or not, respectively. The SP-2 ELIM uses the
jm_status command to collect information from the Resource Manager.

The ‘poejob’ script is installed as part of the standard installation procedure. The SP-2-
specific ELIM can be found in the examples directory of the distribution.

The following steps should be followed to allow POE jobs to run under LSF:

Step 1 Ensure that the SP-2 node names are the same as their host names. That is,
jm_status should return the same names for the nodes that lsload returns.

Step 2 Build and install the SP-2 ELIM. A README.sp2 file is provided in the
examples directory with specific instructions.

Step 3 Add the following to the lsf.shared file in the LSF_CONFDIR directory to
pick up the indices reported by the ELIM

Begin Resource
NAME TYPE INTERVAL INCREASING DESCRIPTION
lock Numeric 60 Y (IBM SP2 Node lock status)
pool Numeric 60 N (IBM SP2 POWER parallel system pool)
End NewIndex Resource

• For all queues which accept POE jobs define a requeue exit value and a threshold
for the lock index.
���

&

For example:

Begin Queue
NAME=poejobs
lock=0
REQUEUE_EXIT_VALUES = 133
...
End Queue

The poejob script will exit with 133 if it is necessary to requeue the job. Note that other
types of jobs should not be submitted to the same queue. Otherwise, they will get
requeued if they happen to exit with 133. The scheduling threshold on the lock index
prevents dispatching to nodes which are being used in exclusive mode by other jobs.

Note that it is only necessary to enable requeuing of POE jobs if some users submit jobs
requiring exclusive access to the node.

6XSSRUW�IRU�+3�([HPSODU�7HFKQLFDO�6HUYHUV

The HP Exemplar Technical Server is a high performance cache coherent Non Uniform
Memory Access (ccNUMA) computer system. The Exemplar system supports the
partitioning of the computing resources into subcomplexes which are collections of
processors and memory from one or hypernodes in the system. The Subcomplex
Manager (SCM) enables administrators to configure processor and memory resources
into subcomplexes.

The following are provided in LSF to support the Exemplar:

• An external LIM (ELIM) which collects subcomplex load information. There are 6
load indices collected for each subcomplex including the subcomplex’s private
memory, global memory, number of CPUs, 5-second run queue, 30-second run
queue, and 60-second run queue. This information can be used to control the
scheduling of jobs onto a subcomplex.

• A queue-level job starter (see ‘Job Starter’ on page 227) to start a job on a particular
subcomplex. Each LSF Batch queue must be associated with one subcomplex.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

6DPSOH�6\VWHP�6XSSRUW&
LSF does not currently support dynamic load balancing between subcomplexes.

The following steps should be taken to setup an Exemplar system to run LSF.

Step 1 Build and install the Exemplar ELIM. Follow the instructions in the README
file in the examples directory of the distribution.

Step 2 Add the definitions for the load indices for each subcomplex in the
lsf.shared file.

Step 3 Add queue definitions for each subcomplex to the lsb.queues file.

$GGLQJ�/RDG�,QGLFHV�'HILQLWLRQV

Edit the LSF_CONFDIR/lsf.shared configuration. Add the definitions for the load
indices for each subcomplex. For example, if you have two subcomplexes, you need to
configure 12 indices as follows:

Begin Resource
NAME TYPE INTERVAL INCREASING DESCRIPTION
sc1Pme Numeric 60 N (Subcomplex one private memory)
sc1Gme Numeric 60 N (Subcomplex one global memory)
sc1cpu Numeric 60 N (Subcomplex one number cpu)
sc1r5s Numeric 60 Y (Subcomplex one five sec runQ)
sc1r30 Numeric 60 Y (Subcomplex one thirty sec runQ)
sc1r1m Numeric 60 Y (Subcomplex one one minute runQ)
sc2Pme Numeric 60 N (Subcomplex two private memory)
sc2Gme Numeric 60 N (Subcomplex two global memory)
sc2cpu Numeric 60 N (Subcomplex two number cpu)
sc2r5s Numeric 60 Y (Subcomplex two five sec runQ)
sc2r30 Numeric 60 Y (Subcomplex two thirty sec runQ)
sc2r1m Numeric 60 Y (Subcomplex two one minute runQ)
End NewIndex

The index names should be of the form scNxxx where N is the subcomplex number.
The name of the subcomplexes defined on the system can be obtained by running the
following command
���

&

% sysinfo -ls
System load average: 4.30 4.28 4.09
largeGlbMem load average: 3.20 2.18 2.07

The subcomplex number corresponds to its position in the list. In the above example,
System is subcomplex 1 and largeGlbMem is subcomplex 2. The names of the indices
can be modified if appropriate changes are made to the supplied ELIM.

It is possible to change the name of the indices to include the subcomplex name instead
of using a number. This requires changes to the supplied Exemplar ELIM.

The built-in load indices reported by the LIM on the Exemplar are implemented as
follows:

• r15s, r1m, and r15m are the total run queue lengths of all nodes in all
subcomplexes

• ut and pg are the CPU utilization and paging rate averaged over all nodes in all
subcomplexes

• mem is the amount of global memory available

• The swp index is not currently available on the Exemplar. The swp index should
not be used as a threshold to control scheduling

$GGLQJ�4XHXH�'HILQLWLRQV

Edit the queue definitions in LSB_CONFDIR/cluster/configdir/lsb.queues to
add queue definitions for each subcomplex. A Job Starter should be specified for each
queue to control which subcomplex jobs from the queue will run on.

For example:
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

6DPSOH�6\VWHP�6XSSRUW&
Begin Queue
QUEUE_NAME = long
JOB_STARTER = mpa -sc largeGlbMem
.
.
DESCRIPTION = Long jobs on the largGlbMem subcomplex
End Queue
Begin Queue
QUEUE_NAME = short
JOB_STARTER = mpa -sc System
.
.
DESCRIPTION = Short jobs on the System subcomplex
End Queue

The JOB_STARTER parameter uses the mpa(1) command to start the job script file onto
the subcomplex specified with the -sc option. LSF sets the LSB_JOBFILENAME
environment variable, which specifies a shell script containing the user’s commands.

You can use the load indices for each subcomplex to control the scheduling or
suspension of jobs on that subcomplex. For example:

Begin Queue
QUEUE_NAME = idle
JOB_STARTER = mpa -sc System
sc1r1m = 2.0/6.0
.
End Queue

would only start jobs on the System subcomplex if the 1-minute run queue was below
2.0 and suspend jobs if it goes above 6.0. Note that the load index specified in the
scheduling constraints should correspond to the subcomplex specified in the
JOB_STARTER parameter.

It is possible to make use of the queue level pre-/post-execution commands to move
CPUs between subcomplexes on a per-job basis. For example, if an exclusive
subcomplex has been set up, CPUs can be moved from the system subcomplex before
job execution by the pre-exec command and moved back to the system subcomplex
after job execution by the post-execution command.
���

&

Begin Queue
QUEUE_NAME = exclusive
JOB_STARTER = mpa -sc Exclusive
.
PRE_EXEC = /usr/spp/moveCpuToEx
POST_EXEC = /usr/spp/moveCpuToSys
End Queue

The Exemplar supports kernel level checkpointing using the chkpnt(1) and
restart(1) commands. To enable checkpointing on Exemplar systems, copy
erestart and echkpnt to the LSF_SERVDIR.

Users are not required to take any special actions for submitting jobs on a Exemplar
system. If an Exemplar system is integrated into a larger cluster of machines, it is
possible to set up queues that can dispatch to all machines. You need to specify a Job
Starter script, which runs the job file through the mpa(1) for the Exemplar, and just
executes the job file on non-Exemplar systems. Also scheduling constraints should be
specified using the queue-level RES_REQ parameter to distinguish between Exemplar
and non-Exemplar systems. For example:

RES_REQ= (type==Exemplar && sc1r1m < 2.0) || (type != Exemplar && r1m < 2.0)

&RQILJXULQJ�146�,QWHURSHUDWLRQ

NQS (Network Queuing System) is a UNIX batch queuing facility that allows users to
queue batch jobs to individual UNIX hosts from remote systems. This section describes
how to configure and use LSF to submit and control batch jobs in NQS queues.

If you are not going to configure LSF to interoperate with NQS, you do not need to read
this section.

While it is desirable to run LSF on all hosts for transparent resource sharing, this is not
always possible. Some of the computing resources may be under separate
administrative control, or LSF may not currently be available for some of the hosts.

An example of this is sites that use Cray supercomputers. The supercomputer is often
not under the control of the workstation system administrators. Users on the
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

6DPSOH�6\VWHP�6XSSRUW&
workstation cluster still want to run jobs on the Cray supercomputer. LSF allows users
to submit and control jobs on the Cray system using the same interface as they use for
jobs on the local cluster.

LSF queues can be configured to forward jobs to remote NQS queues. Users can submit
jobs, send signals to jobs, check the status of jobs, and delete jobs that are forwarded to
the remote NQS. Although running on an NQS server outside the LSF cluster, jobs are
still managed by LSF Batch in almost the same way as jobs running inside the LSF
cluster.

5HJLVWHULQJ�/6)�ZLWK�146

This section describes how to configure LSF and NQS so that jobs submitted to LSF can
be run on NQS servers. You should already be familiar with the administration of the
NQS system.

+RVWV

NQS uses a machine identification number (MID) to identify each NQS host in the
network. The MID must be unique and must be the same in the NQS database of each
host in the network. LSF uses the NQS protocol to talk with NQS daemons for routing,
monitoring, signalling and deleting LSF Batch jobs that run on NQS hosts. Therefore,
you must assign a MID to each of the LSF hosts that might become the master host.

To do this, perform the following steps:

Step 1 Log in to the NQS host as the NQS System Administrator or System Operator.

Step 2 Run the nmapmgr command to create MIDs for each LSF host that can possibly
become the master host. List all MIDs available. See the NQS nmapmgr(1)
manual page for a description of this command.

8VHUV

NQS uses a mechanism similar to ruserok(3) to determine whether access is
permitted. When a remote request from LSF is received, NQS looks in the /etc/
hosts.equiv file. If the submitting host is found, requests are allowed as long as the
user name is the same on both hosts. If the submitting host is not listed in the /etc/
hosts.equiv file, NQS looks for a .rhosts file in the destination user’s home
���

&

directory. This file must contain the names of both the submitting host and the
submitting user. Finally, if access still is not granted, NQS checks for a file called /etc/
hosts.nqs. This file is similar to the .rhosts file, but it can provide mapping of
remote user names to local user names. Cray NQS also looks for a .nqshosts file in
the destination user’s home directory. The .nqshosts file has the same format as the
.rhosts file.

NQS treats the LSF cluster just as if it were a remote NQS server, except that jobs never
flow to the LSF cluster from NQS hosts.

For LSF users to get permission to run jobs on NQS servers, you must make sure the
above setup is done properly. Refer to your local NQS documentation for details on
setting up the NQS side.

lsb.nqsmaps

The lsb.nqsmaps file in the LSB_CONFDIR/cluster/configdir directory is for
configuring inter-operation between LSF and NQS.

+RVWV

LSF must use the MIDs of NQS hosts when talking with NQS servers. The Hosts
section of the LSB_CONFDIR/cluster/configdir/lsb.nqsmaps file contains the
MIDs and operating system types of your NQS hosts.

Begin Hosts
HOST_NAME MID OS_TYPE
cray001 1 UNICOS #NQS host, must specify OS_TYPE
sun0101 2 SOLARIS #NQS host
sgi006 3 IRIX #NQS host
hostA 4 - #LSF host; OS_TYPE is ignored
hostD 5 - #LSF host
hostB 6 - #LSF host
End Hosts

Note that the OS_TYPE column is required for NQS hosts only. For hosts in the LSF
cluster, OS_TYPE is ignored; the type is specified by the TYPE field in the
lsf.cluster.cluster file. The ‘-’ entry is a placeholder.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

6DPSOH�6\VWHP�6XSSRUW&
8VHU�1DPH�0DSSLQJ

LSF assumes that users have the same account names and user IDs on all LSF hosts. If
the user accounts on the NQS hosts are not the same as on the LSF hosts, the LSF
administrator must specify the NQS user names that correspond to LSF users.

The Users section of the lsb.nqsmaps file contains entries for LSF users and the
corresponding account names on NQS hosts. The following example shows two users
who have different accounts on the NQS server hosts.

Begin Users
FROM_NAME TO_NAME
user7 (user7l@cray001 luser7@sgi006)
user4 (suser4@cray001)
End Users

FROM_NAME is the user’s login name in the LSF cluster, and TO_NAME is a list of the
user’s login names on the remote NQS hosts. If a user is not specified in the
lsb.nqsmaps file, jobs are sent to the NQS hosts with the same user name.

&RQILJXULQJ�4XHXHV�IRU�146�MREV

You must configure one or more LSF Batch queues to forward jobs to remote NQS
hosts. A forward queue is an LSF Batch queue with the parameter NQS_QUEUES
defined. ‘Adding a Batch Queue’ on page 90 describes how to add a queue to an LSF
cluster. The following queue forwards jobs to the NQS queue named pipe on host
cray001:

Begin Queue
QUEUE_NAME = nqsUse
PRIORITY = 30
NICE = 15
QJOB_LIMIT = 5
UJOB_LIMIT = ()
CPULIMIT = 15
NQS_QUEUES = pipe@cray001
DESCRIPTION = Jobs submitted to this queue are forwarded to NQS
_QUEUES
USERS = all
End Queue
���

&

You can specify more than one NQS queue for the NQS_QUEUES parameter. LSF Batch
tries to send the job to each queue in the order they are listed, until one of the queues
accepts the job.

Since many features of LSF are not supported by NQS, the following queue
configuration parameters are ignored for NQS forward queues: PJOB_LIMIT,
POLICIES, RUN_WINDOW, DISPATCH_WINDOW, RUNLIMIT, HOSTS, MIG. In addition,
scheduling load threshold parameters are ignored because NQS does not provide load
information about hosts.

+DQGOLQJ�&UD\�146�,QFRPSDWLELOLWLHV

Cray NQS is incompatible with some of the public domain versions of NQS. Different
versions of NQS on Cray may be incompatible with each other. If your NQS server host
is a Cray, some additional steps may be needed in order for LSF to understand the NQS
protocol correctly.

If the NQS version on a Cray is NQS 80.42 or NQS 71.3, then no extra setup is needed.
For other versions of NQS on a Cray, you need to define NQS_REQUESTS_FLAGS and
NQS_QUEUES_FLAGS in the lsb.params file.

NQS_REQUESTS_FLAGS = integer

If the version is NQS 1.1 on a Cray, the value of this flag is 251918848.

For other versions of NQS on a Cray, do the following to get the value for this flag. Run
the NQS command:

% qstat -h CrayHost -a

on a workstation, where CrayHost is the host name of the Cray machine. Watch the
messages logged by Cray NQS (you need access to the NQS log file on the Cray host):

03/02 12:31:59 I pre_server(): Packet type=<NPK_QSTAT(203)>.

03/02 12:31:59 I pre_server(): Packet contents are as follows:

03/02 12:31:59 I pre_server(): Npk_str[1] = <>.

03/02 12:31:59 I pre_server(): Npk_str[2] = <platform>.

03/02 12:31:59 I pre_server(): Npk_int[1] = <1392767360>.

03/02 12:31:59 I pre_server(): Npk_int[2] = <2147483647>.

03/02 12:31:59 I show_qstat_flags(): Flags=SHO_R_ALLUID SHO_R_SHORT
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

6DPSOH�6\VWHP�6XSSRUW&
SHO_RS_RUN SHO_RS_STAGE SHO_RS_QUEUED SHO_RS_WAIT SHO_RS_HOLD SHO_RS_ARRIVE

SHO_Q_BATCH SHO_Q_PIPE SHO_R_FULL SHO_R_HDR

The value of Npk_int[1] in the above output is the value you need for the parameter
NQS_REQUESTS_FLAGS.

NQS_QUEUES_FLAGS = integer

To get the value for this flag, run the NQS command:

% qstat -h CrayHost -p -b -l

on a workstation, where CrayHost is the host name of the Cray machine. Watch the
messages logged by Cray NQS (you need to have access to the Cray NQS log file):

03/02 12:32:57 I pre_server(): Packet type=<NPK_QSTAT(203)>.

03/02 12:32:57 I pre_server(): Packet contents are as follows:

03/02 12:32:57 I pre_server(): Npk_str[1] = <>.

03/02 12:32:57 I pre_server(): Npk_str[2] = <platform>.

03/02 12:32:57 I pre_server(): Npk_int[1] = <593494199>.

03/02 12:32:57 I pre_server(): Npk_int[2] = <2147483647>.

03/02 12:32:57 I show_qstat_flags(): Flags=SHO_H_ACCESS SHO_H_DEST

SHO_H_LIM SHO H_RUNL SHO_H_SERV SHO_R_ALLUID SHO_Q_HDR SHO_Q_LIMITS

SHO_Q_BATCH SHO_Q_PIPE SHO_Q_FULL

The value of Npk_int[1] in the above output is the value you need for the parameter
NQS_QUEUES_FLAGS.

If you are unable to get the required information after running the above NQS
commands, make sure that your Cray NQS is configured properly to log these
parameters. To do this, run:

% qmgr

and enter show all to get all information. The parameters related to the logging of
the information you need are:

Debug level = 3

MESSAGE_Header = Short
���

&

MESSAGE_Types:

Accounting OFF CHeckpoint OFF COMmand_flow OFF

CONfig OFF DB_Misc OFF DB_Reads OFF

DB_Writes OFF Flow OFF NETWORK_Misc ON

NETWORK_Reads ON NETWORK_Writes ON OPer OFF

OUtput OFF PACKET_Contents ON PACKET_Flow ON

PROTOCOL_Contents ON PROTOCOL_Flow ON RECovery OFF

REQuest OFF ROuting OFF Scheduling OFF

USER1 OFF USER2 OFF USER3 OFF

USER4 OFF USER5 OFF

6XSSRUW�IRU�$WULD�&OHDU&DVH

Many sites use Atria’s ClearCase environment for revision source control and
development. A user uses the cleartool command to startup a ClearCase view.
After the view is created, the user is presented with a file system containing the user’s
sources and binaries. The file system is not accessible outside the view. cleartool
has an option to start up a view and run a command under the view.

LSF’s job starter can be used to set up a view then run the command (see ‘Job Starter’
on page 227 for further information). For example, if you create a script
“clearstarter” similar to the following:

#!/bin/sh
if [x_$CLEARCASE_ROOT = x_]; then

cd $LS_SUBCWD
$*

else
/usr/atria/bin/cleartool setview \

-exec “cd $LS_SUBCWD;$*” \
‘basename $CLEARCASE_ROOT‘

fi

And specify it as a job starter, the user’s job will run by LSF using the command line:

clearstarter myjob
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

6DPSOH�6\VWHP�6XSSRUW&
which sets up a view the same as the user’s on submission host, changes directory to
the same as on submission host, then runs the job. The remote job runs in the same
view as on local host.

For interactive jobs, the user sets the environment variable LSF_JOB_STARTER to the
ClearCase job starter. The RES on the remote host then will run the user’s job via the
job starter. After the job starter is set, lsmake can run transparently in ClearCase view.

There are three steps to run an interactive job through the RES in a ClearCase view:

Step 1 Write a ClearCase job starter script (see example above).

Step 2 Set the LSF_JOB_STARTER environment variable. This can be done by each
user or as part of the login process. For example:

% setenv LSF_JOB_STARTER clearstarter

Step 3 Run the job. For example:

% lsmake -j 4 -V -f foo.mak

To run a batch job in ClearCase view, the csub command should be used instead of
bsub. With csub, no job starter needs to be used (look in the $LSF_INDEP/misc/
examples/clearcase directory for the files clearstarter and csub. LSF_INDEP
is defined in the lsf.conf file).

csub checks whether the environment variable CLEARCASE_ROOT is set. If it is set,
which means the job is submitted from a view, it wraps the user’s job as following:

cleartool setview -
exec “cd $LS_SUBCWD;job” ‘basename $CLEARCASE_ROOT‘

and passes all options to bsub , except -i , -o and -e . These three options will be
translated to shell I/O redirection. For example, suppose CLEARCASE_ROOT=/view/
myview and the user enters:

% csub -q myqueue -o myout -i myin myjob

csub will translate this into:
���

&

bsub -q myqueue cleartool setview -
exec “cd $LS_SUBCWD; myjob < myin > myout \

2>&1” myview

An alternative way is to configure a queue-level job starter (define JOB_STARTER in
the file lsb.queues ; see ‘Queue-Level Job Starters’ on page 129 for details), then use
bsub to submit the job.

8VLQJ�/6)�:LWKRXW�6KDUHG�)LOH�6\VWHPV

Some networks do not share files between hosts. LSF can still be used on these
networks, with reduced fault tolerance.

You must choose one host to act as the LSF master host. The LSF configuration files and
working directories must be installed on this host, and the master host must be listed
first in the lsf.cluster.cluster file.

To install on a cluster without shared file systems, follow the complete installation
procedure on every host to install all the binaries, manual pages, and configuration
files. After you have installed LSF on every host, you must update the configuration
files on all hosts so that they contain the complete cluster configuration. The
configuration files must be the same on all hosts.

Some fault tolerance can be introduced by choosing more than one host as possible
master hosts, and using NFS to mount the LSF Batch working directory on only these
hosts. All the possible master hosts must be listed first in the lsf.cluster.clustername file.
As long as one of these hosts is available, LSF Batch continues to operate.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

'� /6)�RQ�:LQGRZV�17

This appendix describes how to run LSF on Windows NT. It is assumed that you are
already familiar with LSF concepts, and have installed LSF on Windows NT following
the instructions in the LSF Installation Guide.

5HTXLUHPHQWV

• You must use a domain account (as opposed to a local account) when interacting
with .

• Users must enter their passwords into an encrypted database maintained by LSF
and any changes to Windows NT passwords must be reflected in the password
database used by LSF.

5HFRPPHQGHG

• The Windows NT Resource Kit contains many useful utilities (for example,
pview) for monitoring processes.

• A telnet daemon to enable remote login sessions or some other form of remote
access software to allow for easier management.

'LIIHUHQFHV�%HWZHHQ�/6)�IRU�81,;�DQG�17

• The shell used to invoke commands is cmd.exe instead of /bin/sh as on UNIX.
For example, the queue-level pre and post-exec commands are invoked as:
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�RQ�:LQGRZV�17'
cmd.exe /C pre-exec command

• The NULL device on Windows NT is NUL rather than /dev/null as on UNIX.
LSF translates /dev/null to NUL for Windows NT.

• The /etc directory on UNIX corresponds to the %SYSTEMROOT % directory on NT.

• On UNIX, LSF always uses /tmp as the temporary directory. On Windows NT, the
temporary directory used by LSF can be configured by setting LSF_TMPDIR as a
system environment variable. If that variable is not found, LSF goes to the next
item in the following list, until a directory is defined:

LSF_TMPDIR environment variable
LSF_TMPDIR variable in the lsf.conf file
TMP environment variable (C:\temp by default)
TEMP environment variable (C:\temp by default)
%SYSTEMROOT %

• There is no native support in Windows NT for UNIX-style signals. Therefore
sending an arbitrary signal to a job via the -s option of bkill has no meaning on
Windows NT. LSF, however, supports the job control functionality by providing
the equivalent of SIGSTOP, SIGCONT, and SIGTERM to suspend, resume, and
terminate a job. These can be accessed through the commands bstop, bresume,
and bkill.

• The UNIX umask parameter is ignored on Windows NT.

• When inputting commands to bsub, remember that the syntax of the commands
must be specified in the form understood by Windows NT batch files. For example
to specify multiple commands in a single line, use ‘&&’ as the command separator
instead of ‘;’ as in UNIX. For example, use:

bsub ‘cmd1 && cmd2’

instead of:

bsub ‘cmd1; cmd2’

Also when specifying commands from standard input, use CTRL-Z to indicate
EOF. On UNIX, CTRL-D is used. For example:
���

'

c:\temp> bsub -q simulation
bsub> myjob arg1 arg2
bsub> ^Z

• The tmp index returned by lim measures the space on the drive specified by the
TEMP system environment variable.

)LOH�3HUPLVVLRQV

The directories work, logs, bin, lib, etc, and conf, are all subdirectories of your
LSF directory.

For all LSF files, Platform Computing recommends that you give full control
permission to the Domain Admins user group. Other permissions should be set as
shown:

work, logs
LSF primary administrator: full control (All) (All)
domain administrator:. full control (All) (All)
everyone: . special access (R) (R)

bin, lib, etc
LSF primary administrator: full control (All) (All)
domain administrator:. full control (All) (All)
everyone: . special access (RX) (RX)

conf
LSF primary administrator: full control (All) (All)
domain administrator:. full control (All) (All)
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�RQ�:LQGRZV�17'
0DLO

When LSF needs to send email to users, it invokes the program defined by
LSB_MAILPROG in the lsf.conf file (in the etc subdirectory). If LSB_MAILPROG
is not defined, no email is sent.

To use email, you need to use LSF’s lsmail.exe program, which can send email to
a UNIX host by using the Windows NT rsh utility (%WINDIR%\system32\rsh) to
invoke sendmail(1) on the UNIX host. In order for this to work, the UNIX machine
must be set up to allow the NT rsh client to run on it.

To support this method of sending email, lsmail.exe should be copied to a file
corresponding to the name of the UNIX host. For example,

copy lsmail.exe unixhost.exe

Here unixhost is a UNIX machine which supports sendmail(1). The
LSB_MAILPROG should correspond to the unixhost.exe file. For example:

LSB_MAILPROG=//serverA/tools/lsf/bin/unixhost.exe

See ‘LSB_MAILPROG’ on page 162 for details on how LSB_MAILPROG is invoked.

7KH�cmd.exe�3URJUDP

The command shell (cmd.exe) under Windows NT 4.0 cannot be started from a
directory which is specified as a UNC name. For example, if you type the following on
the command line, cmd.exe will end up starting in the directory specified by
%WINDIR%, the system root directory of the current machine.

start /d\\serverA\share\username cmd.exe

As a result, jobs submitted from a shared directory will not start in the correct directory
on the execution host.
���

'

The command shell from Windows NT 3.51, however, does support this feature.
Microsoft has confirmed that this is a bug in NT 4.0, and included a fix in service pack
3 (refer to the article Q156276 in the Microsoft Knowledge Database for information).

In order for LSF to work correctly on Windows NT 4.0 machines, you can use one of
three methods.

• Update your Windows NT 4.0 installation with service pack 3. LSF modifies the
appropriate registry keys mentioned in article Q156276 to allow the UNC path to
work.

• Replace your existing Windows NT 4.0 cmd.exe with the cmd.exe from service
pack 3. The cmd.exe file typically resides in the %WINDIR%\system32 directory.
LSF modifies the appropriate registry keys mentioned in article Q156276 to allow
the UNC path to work.

• Copy the Windows NT 3.51 cmd.exe into the %WINDIR%\system32 directory
under another name, e.g. cmd351.exe, and set the LSF_CMD_SHELL variable in
the lsf.conf file to tell LSF to use this shell instead of cmd.exe.

For example, put the following line into the lsf.conf file:

LSF_CMD_SHELL=cmd351.exe

+HWHURJHQHRXV�17�81,;�(QYLURQPHQWV

8VHU�$FFRXQWV�

To run jobs in a mixed cluster, LSF users should have a user account with the same user
name on UNIX and Windows NT. It is particularly important that the LSF primary
administrator user account always have the same user name on both platforms.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�RQ�:LQGRZV�17'
&RQILJXUDWLRQ�)LOHV

Note
If you used the Windows NT version of LSF Setup to create the UNIX/NT mixed
cluster, as described in the LSF Installation Guide, the following settings have already
been configured.

The LSF configuration files must be accessible from both NT and UNIX hosts. You can
set up a shared file system between the UNIX and NT machines via NFS client on NT
or an SMB server on UNIX, or, alternatively, you can replicate the configuration files.
No matter how you arrange your configuration files, you must make sure that the port
numbers (LSF_LIM_PORT, LSF_RES_PORT, LSF_SBD_PORT and LSF_MBD_PORT)
defined in the lsf.conf file are the same on both UNIX and NT.

For example, if you use an SMB server on the UNIX side, you would simply set the
three variables—LSF_CONFDIR, LSB_CONFDIR, and LSF_SHAREDIR—in the
lsf.conf file to point to the corresponding directories used by the UNIX hosts. The
LSF_CONFDIR and LSB_CONFDIR directories must be accessible to all users (read
permission). However, only the LSF primary administrator should have full control of
these directories (read and write permissions).

(QYLURQPHQW�9DULDEOHV

By default, LSF transfers environment variables from the submission host to the
execution host. However, some environment variables are not applicable to another
operating system.

When submitting a job from a Windows NT machine to a UNIX machine, the -L option
of the bsub command can be used to reinitialize the environment variables. If
submitting a job from a UNIX machine to a NT machine, you can set the environment
variables explicitly in your job script. Alternatively, the Job Starter feature can be used
to reset the environment variables before starting the job. LSF automatically resets the
PATH on the execution host if the submission host is of a different type.

If the submission host is Windows NT and the execution host is UNIX, then the PATH
variable is set to /bin:/usr/bin:/sbin:/usr/sbin and LSF_BINDIR (if defined
in the lsf.conf file) is appended to it. If the submission host is UNIX and the
execution host is Windows NT, the PATH variable is set to the system PATH variable
with LSF_BINDIR appended to it.
���

'

&URVV�3ODWIRUP�'DHPRQ�6WDUWXS

The lssrvcntrl.exe binary only works when invoked from a Windows NT host.
You will not be able to start LSF daemons on a Windows NT machine from a UNIX
host.

6LJQDO�&RQYHUVLRQ

LSF supports signal conversion between UNIX and Windows NT for remote
interactive execution through RES (when you are using lsrun and bsub -I).

On Windows NT, the CTRL+C and CTRL+BREAK key combinations are treated as
signals for console applications (these signals are also called console control events).
LSF supports these two NT console signals for remote interactive execution, i.e. on the
execution host LSF regenerates these signals for users’ tasks. In a mixed NT/UNIX
environment, LSF has the following default conversion between the NT console signals
and the UNIX signals:

7DEOH����81,;�17�6LJQDO�&RQYHUVLRQ

For example, if you issue lsrun or bsub -I commands from an NT console, but the
task is running on a UNIX host, pressing the CTRL+C keys will generate a UNIX
SIGINT signal to your task on the UNIX host. The reverse is also true.

&XVWRP�6LJQDO�&RQYHUVLRQ

For lsrun (but not bsub -I), LSF allows users to define their own signal conversion
using the following two environment variables.

• LSF_NT2UNIX_CLTRC

• LSF_NT2UNIX_CLTRB

For example, suppose a user sets the following:

:LQGRZV�17 81,;

CTRL+C SIGINT

CTRL+BREAK SIGQUIT
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�RQ�:LQGRZV�17'
LSF_NT2UNIX_CLTRC=SIGXXXX

LSF_NT2UNIX_CLTRB=SIGYYYY

Here, SIGXXXX/SIGYYYY are UNIX signal names such as SIGQUIT, SIGTTIN, etc.
The conversions will then be: CTRL+C = SIGXXXX and CTRL+BREAK = SIGYYYY.

If both LSF_NT2UNIX_CLTRC and LSF_NT2UNIX_CLTRB are set to the same value,
(LSF_NT2UNIX_CLTRC=SIGXXXX and LSF_NT2UNIX_CLTRB=SIGXXXX), then on
the Windows NT execution host, CTRL+C will be generated.

For bsub -I, there is no conversion other than the default conversion.

6WDUWLQJ�6HUYLFHV�DQG�'DHPRQV

The LSF service and daemons on each LSF server host will start automatically when
the machine is restarted.

If you cannot restart each host at this time, log on as an LSF cluster administrator (a
member of the LSF Global Administrators group) and start the LSF service and
daemons manually.

Note
You should not use the primary LSF administrator’s account (normally lsfadmin)
to start or stop LSF service and daemons.

To start the LSF service and daemons, use any one of the following methods:

• Use the Windows NT Server Manager to start “LSF Service” on all LSF server
hosts.

• Click “Services” on the Windows NT Control Panel and start “LSF Service”. You
will have to repeat this step on each LSF server host.

• Where LSF Batch has been installed, go to the “LSF Suite for Workload
Management/LSF Batch” program folder, and use the LSF administrative tool
���

'

“LSF Batch Administration”. (You can use this tool to perform all your
administrative tasks for LSF Base and LSF Batch products.)

• Start a new command console, and type:

lssrvcntrl start -m all lssrvman

Usage information for lssrvcntrl is available by typing lssrvcntrl with
no options.

8VLQJ�/6)

Each user who wants to use LSF needs to supply the password of his/her domain user
account. Use the lspasswd.exe command, and follow the instructions. For example:

lspasswd [-u user_name]

If you do not specify the -u option as above, the user is assumed to be the current user.

In addition, all users need to have the “Logon as a batch job” privilege on every LSF
server host. For this purpose, you can simply put all LSF users into the ‘LSF user group’
created for or assigned by you during the installation. The LSF user group has the
“Logon as a batch job” privilege on all LSF server hosts.

0LVFHOODQHRXV

• The machines running LSF are expected to have fixed IP addresses. If you use
DHCP to assign IP addresses dynamically, LSF can still work, provided the
reassigned IP address of an LSF host does not change.

• When using LSF’s remote execution functions through the Remote Execution
Server, there is no support for pty-type options for lsrun and bsub -I, i.e. the
-P and -S options for lsrun and -Ip and -Is options for bsub are not
supported.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

/6)�RQ�:LQGRZV�17'
• If you log on as the LSF primary administrator from the console while the LSF
service is running from a file server over the network, and then log off again, the
LSF service and daemons may die on that host. Logging off appears to cause
Windows NT to close all network connections for the LSF primary administrator
user account, including those used by an LSF service or LSF daemons.

• When writing an external command that is invoked by LSF (for example, elim,
esub, or eexec), the command must be a binary executable, that is, elim.exe or
esub.exe. It cannot be a batch file such as elim.bat.

• LSF_USE_HOSTEQUIV parameter in lsf.conf is ignored on Windows NT.

• Nice values specified at the queue-level through the NICE parameter are mapped
to NT process priority classes as follows:

nice>=0 corresponds to an NT priority class of IDLE
nice<0 corresponds to an NT priority class of NORMAL

LSF does not support HIGH or REAL-TIME priority classes.

• The io index shows 0, unless the disk performance counters are turned on. To turn
on disk performance counters, use the DISKPERF command.

Note
Turning on the performance counters incurs extra overhead in disk I/O.

• A job which runs under a CPU time limit may exceed that limit by up to
SBD_SLEEP_TIME. This is because sbatchd periodically checks if the limit has
been exceeded. On UNIX systems, the CPU limit can be enforced by the OS at the
process level.

• The UNIX man pages, converted to HTML format, are stored in the html
subdirectory of your LSF directory.
���

(� 7KH�/6)�6103�$JHQW

This appendix describes how to use the LSF SNMP (Simple Network Management
Protocol) agent. It is assumed that you are already familiar with SNMP concepts.

$ERXW�WKH�$JHQW

To integrate with existing network and system management frameworks, LSF
supports SNMP, an IETF (Internet Engineering Task Force) standard protocol used to
monitor and manage devices and software on the network. Platform has also defined
a Management Information Base (MIB) specific to LSF.

Any SNMP client, from command-line utilities to full network and system
management frameworks, can monitor information provided by the LSF SNMP agent.
It does this by reading or modifying the values of objects in the LSF MIB. The MIB
defines these variables according to internet standards RFC 1155 and RFC 1212, so any
fully compliant SNMP client can query the LSF MIB.

In addition, the LSF SNMP agent supports the Internet standard Management
Information Base (MIB-II) for use in TCP/IP based internets (RFC 1213). This allows
the network manager to run the LSF agent while still being able to retrieve basic MIB-
II statistics.

5HTXLUHPHQWV

The agent can be installed on any LSF host running UNIX and it is compatible with all
SNMP version 1 clients, including HP OpenView, CA Unicenter TNG, and Tivoli TME
10. For information about a particular network or system management framework,
please refer to the documentation supplied by the vendor.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7KH�/6)�6103�$JHQW(
'LVWULEXWLRQ

The agent is available from Platform’s FTP site. Installation instructions are included.
The following files are provided by Platform:

• the SNMP agent (snmpd)

• the LSF MIB (LSF_CONFDIR/snmp/lsf-agent-mib.txt)

• a configuration file (LSF_CONFDIR/snmp/snmpd.conf)

• a script to start the SNMP agent (lsfsnmpd)

6WDUWLQJ�WKH�$JHQW

To simplify the startup process, the LSF SNMP binary file (snmpd)is accompanied by
a script (lsfsnmpd). This script is customized to start the agent in a specific LSF
environment. For example, it contains the location of the configuration file used by the
agent, (LSF_CONFDIR/snmp/snmpd.conf), and the log file that is created when the
agent runs (LSF_LOGDIR/snmpd.log).

The LSF administrator can modify the parameters in the lsfsnmpd script, or run the
snmpd binary file without using the script.

Options which can be set in this file include:

-p port_number
Listen on port port_number (default: port 161).

-l log_file
Log all output from the agent (including stdout/err) to log_file.

-c conf_file
Read conf_file as a configuration file.

-f
Don't fork from the calling shell.
���

(

-L
Don’t open a log file; use stdout/err instead.

6WUXFWXUH�RI�WKH�/6)�0,%

The LSF MIB (LSF_CONFDIR/snmp/lsf-agent-mib.txt) consists of several tables
of information, organized into three groups:

• LSF Base host information (lsfHosts group)

• LSF Base resource information (lsfResources group)

• LSF Batch information (lsfBatch group)

7KH�OVI+RVWV�0,%�*URXS

lsfStaticTable
Consists of one row for each LSF host, indexed by host IP address. Each row
contains static host information, corresponding to the lshosts command.

lsfDynamicTable
Consists of one row for each LSF server, indexed by host IP address. Each row
contains dynamic host information, (corresponding to the lsload command)
composed of the built-in load indices and the host status.

7KH�OVI5HVRXUFHV�0,%�*URXS

lsfNumericTable
Consists of several rows for each resource, one for each LSF host using that
resource, indexed by resource number (generated by the agent) and host IP
address. Each row contains the name of a numeric shared resource or external
index, a location (a host using the resource), and the resource value.

For shared resources, the resource value is the same for all the hosts that share
the resource instance.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7KH�/6)�6103�$JHQW(
7KH�OVI%DWFK�0,%�*URXS

lsbHostsTable
Consists of one row for each LSF batch server, indexed by host IP address.
Each row contains the host limits as well as the host counters.

lsbQueuesTable
Consists of one row for each LSF batch queue, indexed by a number generated
by the agent (corresponding to alphabetical order of queue names). Each row
contains queue limits and queue counters.

lsbJobsTable
Consists of one row for each running batch job, indexed by job ID (for
performance reasons, only running jobs are displayed). Each row contains
information such as the queue, user and execution hosts, and job resource
information.

2SWLRQDO�&RQILJXUDWLRQ�RI�WKH�$JHQW

The configuration file (LSF_CONFDIR/snmp/snmpd.conf) has the format of one
directive per line. Lines preceded by the ’#’ character are treated as comments, and not
parsed.

Directives which can be set in this file are:

syslocation string
This sets the system location for the agent in the system table of the MIB-II tree
to string.

syscontact string
This sets the system contact for the agent in the system table of the MIB-II tree
to string.

trapsink host
This sets the host host to receive traps (e.g., the agent sends a Cold Start trap
when it starts up). To enable multiple hosts to receive traps, add a new line for
each additional host. The default value is null (no hosts receive traps).
���

(

trapcommunity string
This sets the community string in the trap PDU (Protocol Data Unit) to
string.

authtrapenable number
This enables the sending of authentication failure traps when number is set
to 1 (enable). The default value is 2 (disable).

community number string
This sets the community string in slot number to string.

The agent has 5 slots available to keep community strings, so the acceptable
values for number are from 1 to 5. SNMP PDUs sent to the agent should
contain one of the communities in the 5 slots. The default values for each slot
are:

1) public

2) private

3) regional

4) proxy

5) core

If the agent receives a PDU without a known community, it will discard the
request, and if authtrapenable is set to 1, it will generate an authentication
failure trap.
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH ���

7KH�/6)�6103�$JHQW(
���

,QGH[

$HOME/.rhosts 15 badmin reconfig 85, 90

%USRCMD . 227
/etc/hosts.equiv 41

$

address (Platform) xv
AFS (Andrew File System) 6, 42
agent, SNMP . 290
Atria ClearCase

CLEARCASE_ROOT 276
cleartool 275
csub . 276

authd . 11
authentication . 10

DCE client using GSSAPI. 12
Kerberos 4. 12

authentication, in a mixed UNIX/NT
cluster. 166

automount . 6, 240

%

bacct . 80
backfilling . 32, 40
badmin 62, 80, 87, 90, 244
badmin hclose 86, 89
badmin hhist 86
badmin hist . 84
badmin hopen 86
badmin hrestart 85
badmin hshutdown 85, 89
badmin hstartup 49
badmin qact . 87
badmin qinact 87
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH
batch job state . 20
batch jobs

changing execution order 96
checkpoint, restart and migration 37,

224
dispatching order 25
exclusive . 223
file access 40, 42
killing and signalling. 97
migration, see bmig
moving to other queues 96
pending and suspended 20
post-execution conditions 37
preemptable 223
preemption 113
pre-execution conditions. 36
resuming . 35
scheduling algorithm. 111
scheduling priority 208
state diagram 20
suspended by LSF Batch 111
suspending 33

batch server host 88
bbot . 25, 96
bclusters . 153
benchmarks . 68
bhist . 80, 155
bhosts 23, 24, 33, 155
bhosts -l . 111
bhosts, closed status 83
bhpart . 114
binary file

snmpd . 290
bjobs 21, 22, 24, 30, 35, 154
bjobs -lp . 111
���

,QGH[
bkill . 35, 89, 97
bmig . 38
bqueues 23, 24, 33, 86, 154
bresume . 36, 97
brun . 98
brun(1) . 83
bstop . 35, 97
bsub 5, 13, 14, 17, 24, 36, 40
bsub -x . 32
bswitch . 90, 96
bswitch -q . 91
bswitch(1) . 97
btop . 25, 96
btop(1) . 97
built-in load indices 43
busy thresholds. 69

&

CA Unicenter. 289
capacity planning 71
cc . 7
checkpointing 37, 204, 224
chkpnt . 269
CLEARCASE_ROOT environment

variable 276
cleartool . 275
client hosts 171, 183
client_addr . 11
client_port . 12
closed status in bhosts 83
cluster . 3
Cluster Administrator 99
clusters

adding hosts 56
creating . 58
removing hosts 57

command . 3
command-level job starter. 17
community (SNMP) 293
���
computer. 3
configuration

adding a batch queue 88
adding hosts 56
changing . 55
creating new clusters 58
example queues 136
file formats 52
horizontal section 52
hosts file. 188
lsb.hosts file 202, 271
lsb.nqsmaps file 235
lsb.queues file 208
lsb.users file 198
lsf.conf file. 161
lsf.shared file 173
lsf.task file. 58
removing a batch queue 90
removing hosts 57
resource requirements. 58
specifying default values 53
tuning busy thresholds 69
tuning LSF Batch 108
vertical section 53

configuration file
SNMP . 292

configuration lsf.cluster.cluster file
178

Configure Base tab 102
Configure Batch tab 103
Configuring Hierarchical Fairshare . 117
configuring LSF 102
contacting Platform Computing xv
counted software licenses 131
CPU factor 174, 217

tuning. 68
CPU Run Queue Length. 111
CPU run queue length 68, 70
CPU time limit 194, 233
CPU utilization 111

csub . 276

'

daemons
authd . 11
error logs. 45, 168, 239
lmgrd . 73
pidentd . 11
shutting down 49
syslogd . 168

Days . 8
DCE. 6, 42
Deadline Constraint Scheduling 212
default . 114
default host specification. 232
default resource requirement 183
default shell

/bin/sh on UNIX 279
cmd.exe on NT. 279

definition
master host . 81

DEMO license . 72
DFS (Distributed File System) 6
directories

remote access 40, 42
user accounts 7

dispatch windows 23
hosts . 203
queues . 210

dispatching batch jobs 25
DNS (Domain Name Service) 188
documentation . xv
domain names . 171
DONE batch job state 21
duplicate event logging 81
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH
(

eauth . 11
eauth 12, 14, 15, 164
echkpnt . 38
eexec . 42
effective run queue length 71, 111
egroup . 43
ELIM . 43, 179
END . 42
environment variables

CLEARCASE_ROOT 276
HOSTRESORDER 243
LS_EXEC_T 42
LS_JOBPID 42
LSB_CHKPNT_DIR 126
LSB_JOBFILENAME 268
LSB_JOBPGIDS 229
LSB_JOBPIDS 229
LSB_SUSP_REASON 229
LSF_ENVDIR 167
LSF_JOB_STARTER 17
PATH 7, 128, 167
WINDIR . 128

erestart . 38
error logs. 45, 239
error message

"Cannot locate master LIM
now" 242

"chdir(...) failed: no such
file or directory" 243

"Communication time out" 241
"User permission denied" . 14,

242
User permission denied . . . 16

esub . 42
/etc/hosts file 243, 188
/etc/hosts.equiv file. . . 15, 172, 243
/etc/lsf.conf file 45
/etc/services file 167
���

,QGH[
/etc/syslog.conf file 46, 168
exclusive requeue 232
exclusive scheduling 32
execution host . 4
EXIT batch job state 21
external authentication

external key 165
external authentication (eauth) 11
External Host Groups 206
external key (eauth) 165

)

FAIRSHARE . 114
Fairshare Policy 113
fairshare scheduling 31
fault tolerance . 277
fax numbers (Platform) xv
FEATURE . 75
file sharing . 7
First-Come-First-Serve. 118
FLEXlm . 72, 167

log file . 46
network ports. 75
updating licenses. 75
utilities . 74

floating license 132
forward queue. 140, 233, 272
front end queue example. 139

*

gid . 11
Globetrotter Software, see FLEXlm
guides . xv

+

help . xv
���
heterogeneous NT/UNIX environments
283

Hierarchical Fairshare 117
horizontal configuration section 52
Host . 29
Host . 19, 26, 28
host . 3

execution host 4
local . 4
master 4, 5, 81
remote . 4
submission host 4

host dispatch windows. 203
host ftp.lysator.liu.se. 11
host group . 88
host locked licenses. 131
host partitions 31, 88, 206
host preference 221
host status

lockW . 184
host status closed. 83
host thresholds 24
HOSTRESORDER environment variable .

243
hosts

adding to a cluster 56
client. 171, 183
configuring 57, 58
enabling and disabling 47
host names 171
job limits . 209
job slot limits. 26
naming . 188
removing from a cluster 57

hosts.equiv file. 15
hosts.equiv(5) 16
hour . 8
HP Exemplar Technical Servers 265
HP OpenView 289
HTML help files (Windows NT) 288

,

IBM SP-2 . 263
ident . 164
identification protocol 10, 164
idle hosts, sharing. 111
idle queue example 136
IGNORE_DEADLINE 213
installation

client hosts 171
executable files. 165
manual pages 169
servers . 171

it . 34
 load index 34, 111
idle time 110

-

JL/P . 28
JL/U . 28
job . 3

see batch jobs
job ladders, see batch jobs, pre-execution

conditions
job limits. 200, 209
job scheduling . 212
job slot . 26
job slot limits . 26
job starter . 16

command-level 17
queue-level 17, 129, 227

job state
DONE . 21
EXIT . 21
PEND . 20
PSUSP . 22
RUN . 20
SSUSP . 22
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH
USUSP . 22
JOB_CONTROLS 39
JOB_STARTER 18, 130, 227

.

killing jobs . 97

/

liblsf.a . 167
license key . 72
license management 74
license queue example 138
license.dat file. 167
LIM . 1

selection of master 182
LIM policy . 51
lim.acct file . 71
lim.log.hostname file. 46, 240
limitations

number of remote connections. . . 10
lmcksum . 75
lmdown . 75
lmgrd . 73, 75
lmhostid . 75
lmremove . 75
lmreread . 75
lmstat . 75
lmver . 75
load index

pg . 34
load indices . 9

overriding built-in 66
load thresholds 69

LSF Batch queues 216
paging rate 70
run queue length 70
set in lsf.cluster.cluster file 182
���

,QGH[
local host . 4
lockW host status 184
log files . 45

FLEXlm . 46
lim.log.hostname 46
maintenance 45
res.log.hostname 46
SNMP . 290

LOG_DAEMON 46, 168
lost and found queue 90
ls_connect . 42
LS_EXEC_T environment variables . . 42
LS_JOBPID environment variable. . . 42
lsadmin 11, 62, 82, 245

limstartup 49
reconfig . 62
resstartup 49

lsb.acct . 80
lsb.acct file . 36
lsb.events 5, 6, 80
lsb.events file 5
lsb.host . 28
lsb.hosts file. 19, 89, 202, 271

CHKPNT . 204
DISPATCH_WINDOW 203
Host section. 202
HOST_NAME 202
HostGroup section. 205
HostPartition section 206
JL/U . 28, 203
load thresholds 203
MIG . 203
MXJ . 28, 202
USER_SHARES 199

lsb.nqsmaps file 235, 271
Hosts section 235

HOST_NAME 236
MID . 236
OS_TYPE 236

Users section 237
���
FROM_NAME 237
TO_NAME 237

lsb.params file
CLEAN_PERIOD 195
DEFAULT_HOST_SPEC 194
DEFAULT_PROJECT 194
DEFAULT_QUEUE 193
HIST_HOURS 114, 195
JOB_ACCEPT_INTERVAL . . . 25, 195
JOB_TERMINATE_INTERVAL . . 228
MAX_JOB_ARRAY_SIZE 196
MAX_JOB_NUM 80, 195
MAX_PREEXEC_RETRY 149
MAX_SBD_FAIL 195
MBD_SLEEP_TIME 25, 194
NQS_QUEUES_FLAGS 197, 274
NQS_REQUESTS_FLAGS . . . 197, 273
PG_SUSP_IT 34, 196
SBD_SLEEP_TIME 30, 33, 194

lsb.queues file89, 90, 140, 208, 233, 272
ADMINISTRATORS 210
CORELIMIT 218
CPULIMIT 217
DATALIMIT 218
DEFAULT_HOST_SPEC 232
DESCRIPTION 233
DISPATCH_WINDOW 210
EXCLUDE(value) 232
EXCLUSIVE 223
FILELIMIT 218
HJOB_LIMIT 29, 123, 209
HOSTS . 220
JOB_CONTROLS 229

RESUME 229
SUSPEND 229
TERMINATE 230

JOB_STARTER 268, 277
MAX_RESERVE_TIME[n] 211
MEMLIMIT 218
MIG . 224

NICE . 209
NQS_QUEUES 233
PJOB_LIMIT 29, 123, 209
POST_EXEC 225
PRE_EXEC 225
PREEMPTABLE 223
PRIORITY 208
PROCESSLIMIT 219
PROCLIMIT 219
QJOB_LIMIT 29, 209
QUEUE_NAME 208
RCVJOBS_FROM 148
REQUEUE_EXIT_VALUES 231
RES_REQ 213, 269
RESUME_COND 35, 215
RUN_WINDOW 210
RUNLIMIT 218
SLOT_RESERVE 211
SNDJOBS_TO 148
STACKLIMIT 218
STOP_COND 215
SWAPLIMIT 219
TERMINATE_WHEN 230
UJOB_LIMIT 29, 209
USER_SHARES 199, 222
USERS 199, 220

lsb.queues file
UJOB_LIMIT 29

lsb.users . 117
lsb.users file. 116, 198

JL/P . 28
MAX_JOBS . 28
USER . 199
User section. 200

lsb.users file 16, 28
LSB_CHKPNT_DIR environment

variable 126
LSB_CONFDIR/cluster/configdir .

88, 89
LSB_CONFDIR/cluster/configdir/
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH
lsb.hosts 89
LSB_CONFDIR/cluster/configdir/

lsb.queues 90, 91
LSB_JOBFILENAME environment

variable 268
LSB_JOBPGIDS environment variable .

229
LSB_JOBPIDS environment variable 229
LSB_LOCALDIR 81, 82
LSB_SHAREDIR 81, 82
LSB_SHAREDIR/cluster/logdir . 79
LSB_SUB

BEGIN_TIME 94
CHKPNT_DIR 92
CHKPNT_PERIOD 92
DEPEND_COND 93
ERR_FILE . 92
EXCEPTION 95
EXCLUSIVE 92
HOST_SPEC 93
HOSTS . 94
IN_FILE . 92
INTERACTIVE 94
JOB_NAME . 92
LOGIN_SHELL 93
MAIL_USER 93
MAX_NUM_PROCESSORS 94
MODIFY . 93
MODIFY_ONCE 93
NOTIFY_BEGIN 92
NOTIFY_END 92
NUM_PROCESSORS 94
OTHER_FILES 94
OTHER_FILES_nn 94
OUT_FILE . 92
PRE_EXEC . 93
PROJECT_NAME 93
PTY . 94
PTY_SHELL 94
QUEUE . 92
���

,QGH[
RERUNNABLE 93
RES_REQ . 93
RESTART . 93
RESTART_FORCE 93
RLIMIT_CORE 95
RLIMIT_CPU 95
RLIMIT_DATA 95
RLIMIT_FSIZE 95
RLIMIT_RSS 95
RLIMIT_RUN 95
RLIMIT_STACK 95
TERM_TIME 94
TIME_EVENT 94
USER_GROUP 92
WINDOW_SIG 93

LSB_SUB_ABORT_VALUE 92
LSB_SUB_PARM_FILE 91
LSB_SUB_PARM_FILE Option Names .

92
LSB_SUSP_REASON environment

variable 229
.lsbatch directory. 7
lsclusters . 150
LSF administrator 16, 47, 96, 181
LSF Base API . 1
LSF Base Tool . 1
LSF Base tools 19
LSF Batch

administration, see LSF
administrator

queue configurations 136
queue definitions. 208
tuning . 108

LSF Batch . 82
LSF Batch configuration files

lsb.hosts 199
lsb.params 194, 233
lsb.queues 194, 199, 233
lsb.users 199

LSF Enterprise Edition. xiv
���
LSF master host 4, 5, 277
LSF MIB . 291
LSF Service . 13
LSF SNMP agent 290
LSF Standard Edition xiv
LSF Suite documentation xv
LSF Suite products xiii
lsf.cluster.cluster 110, 111
lsf.cluster.cluster file 144
lsf.cluster.cluster file . . . 5, 178, 277

backwards compatibility
ClusterManager, see

ClusterAdmins
section

Manager, see ADMINISTRATORS
ClusterAdmins section 181

ADMINISTRATORS 181
Host section 69, 182, 185

HOSTNAME 183
model 183
nd (number of disks) 183
RESOURCES 184
server 183
type . 183

Hosts section 145
Parameters section 178

ELIM_POLL_INTERVAL . . . 180
ELIMARGS 179
EXINTERVAL 180
FEATURES 146
HOST_INACTIVITY_LIMIT 180
MASTER_INACTIVITY_LIMIT

180
PROBE_TIMEOUT 181
PRODUCTS 179
RETRY_LIMIT 181

RemoteClusters section
CACHE_INTERVAL 147
CLUSTERNAME 147
EQUIV 147

RECV_FROM 147, 152
lsf.conf 13, 14, 15, 38, 41, 81
lsf.conf file

LSF_CROSS_UNIX_NT 165
LSF_ECHKPNTDIR 166

lsf.conf file
LSB_CONFDIR 161
LSB_DEBUG 162
LSB_LOCALDIR 164
LSB_MAILPROG 162, 282
LSB_MAILTO 163
LSB_MBD_PORT 167
LSB_SBD_PORT 167
LSB_SHAREDIR 163
LSF_AFS_CELLNAME 164
LSF_AUTH 14, 164
LSF_BINDIR 165
LSF_CONFDIR 165
LSF_ENVDIR 166
LSF_INCLUDEDIR 166
LSF_INDEP 166, 276
LSF_LIBDIR 167
LSF_LICENSE_FILE 167
LSF_LIM_DEBUG 167
LSF_LIM_PORT 167
LSF_LOG_MASK 168
LSF_LOGDIR 45, 168, 239
LSF_MACHDEP 169
LSF_MANDIR 169
LSF_RES_ACCT 170
LSF_RES_ACCTDIR 170
LSF_RES_DEBUG 170
LSF_RES_PORT 167
LSF_RES_RLIMIT_UNLIM 173
LSF_ROOT_REX 148, 170
LSF_SERVER_HOSTS 171
LSF_SERVERDIR 171
LSF_STRIP_DOMAIN 171
LSF_USE_HOSTEQUIV 172
XLSF_APPDIR 172
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH
XLSF_UIDDIR 172
lsf.shared file 144, 173

Clusters section 145, 173
HostModel section 68, 174
HostType section 174
Resources section 175

lsf.sudoers file
LSF_EAUTH_KEY 191

lsf.sudoers file. 13
LSB_PRE_POST_EXEC_USER . . 190
LSF_EAUTH_USER 191
LSF_EEXEC_USER 191
LSF_STARTUP_PATH 190
LSF_STARTUP_USERS 190

lsf.task file . 58
LSF_AUTH . 15
LSF_BINDIR . 41
LSF_CROSS_UNIX_NT 165
LSF_EAUTH_KEY 12, 165, 191
LSF_EAUTH_USER 11
LSF_ECHKPNTDIR 38, 166
LSF_EEXEC_USER 42
LSF_ENVDIR . 13
LSF_ENVDIR environment variable. 167
LSF_JOB_STARTER 17
LSF_SERVERDIR 12, 14, 38, 42, 43
LSF_STARTUP_PATH 13
LSF_STARTUP_USERS 13
LSF_USE_HOSTEQUIV 15
lsfadmin . 13, 14
lsfdaemons start 14
.lsfhosts . 16
.lsfhosts file 156
lsfsnmpd script 290
lsfstartup . 49
lsgrun . 18
lshosts 24, 47, 151
lsid . 4
lsinfo . 9
LSLIB . 10, 11
���

,QGH[
lsload 47, 69, 71, 112, 151
lslogin . 110
lslogin . 152
lsmon 47, 69, 71, 151
lsplace . 151
lsrcp . 40, 41
lsrun 4, 11, 14, 16, 17, 18, 42, 152
lstcsh . 1
lstcsh . 19

0

machine . 3
mailing address (Platform) xv
Manage Base tab 100
Manage Batch tab 100
Management Information Base (MIB)291
master host . 4, 81
master LIM . 182
MAX_JOB_ARRAY_SIZE parameter . .

196
mbatchd 2, 5, 6, 14, 15, 30, 80
mbatchd.log.hostname file 240
MIB (Management Information Base)291
MID (Machine Identification Number) . .

270
migration . 37, 224

also see bmig
mixed UNIX/NT clusters 283
mpa . 268
multiprocessor computer 3
multiprocessor hosts 29, 71, 202, 209, 217
MXJ . 28

1

network failure . 5
network management software 289
network monitoring 71
���
NFS (Network File System) 6, 240
night queue example 137
normalized run queue length 71
nosuid . 14
NQS (Network Queuing System) . . . 269

forward queue example 140
lsb.nqsmaps file 271
MID (Machine Identification

Number) 270
NQS_QUEUES parameter . . . 140, 233,

272, 273
server . 270
user name mapping 237, 272

NT commands
cmd.exe . 282
DISKPERF 288
lssrvcntrl.exe 285

NT environment
signals . 280

null device
/dev/null on UNIX 280
NUL on NT 280

2

online documentation. xv
HTML files 288

others . 114
owners queue example. 137

3

path
/etc/hosts.equiv 15
/etc/lsf.conf 14
/etc/lsf.sudoers 11
/net . 40
/usr/bin . 7
/usr/local/lsf/mnt 7

/usr/local/lsf/mnt/bin/ . . . 7
PATH environment variable 128, 167
PATH environment variables 7
PEND . 20, 38
PEND state . 22
periodic tasks . 45
permanent license. 72
permission . 15
per-user job limit 200, 209
pg

paging rate 109
pg load index . 34
PG_SUSP_IT . 110
phone numbers (Platform) xv
pidentd . 11
PIM (Process Information Manager) . . 30
PJOB_LIMIT . 29
Platform Computing Corporation xv
POE (Parallel Operating Environment) .

263
preemption . 36
preemptive scheduling 32
privileged ports 10
procedures

Activating and Inactivating Queues.
87

Adding a Batch Server Host 89
Opening and Closing of Batch Server

Hosts 86
Opening and Closing Queues 87
Removing a Batch Server Host . . . 89
Shutting Down LSF Batch Daemons

85
process . 3
process migration, see bmig
Processor reservation 32
processor set . 257
PSUSP batch job state. 22
pub/ident/server 11
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH
4

QJOB_LIMIT . 29
queue dispatch windows 210
queue thresholds 24
QUEUE_NAME . 90
queue-level job starter 17
queues

activating and inactivating 87
adding a queue 88
checkpoint, restart and migration . .

224
configuring 208
description 233
eligible hosts and users 220
example configurations. 136
exclusive . 223
inter-queue priority 113
job slot limits. 26
load thresholds 216
lost and found. 90
moving jobs between 96
opening and closing. 87
preemptable 223
removing a queue 90
resource limits 217
scheduling algorithm. 111
scheduling priority 208
status . 86

5

r15m . 111
r15s . 111
r1m . 111
rcp . 41
reconfiguring . 55
remote command 4
remote execution, permission 15
���

,QGH[
remote host . 4
requeue . 231, 232
RES . 1
RES . 42
res.log.hostname file 46, 240
resource limits. 217
resource requirements 24

configuring . 58
default . 183

resource reservation. 39, 123, 214
resources . 58
restart . 269
restarting . 224
RESUME . 108
RESUME_COND 35, 109
RFC 1413 . 12
RFC 1413 identification protocol . 10, 164
RFC 1413 protocol 10
RFC 93 protocol 10
RFC 931 identification protocol . . 10, 164
.rhosts file 15, 41, 172, 243
rlogin . 10, 110
rsh . 10, 41
RUN . 26
RUN batch job state 20
run limit . 212, 218
run window. 212
run windows 23, 210
RUNLIMIT . 218
ruserok . 15, 172
ruserok(3) 15, 16

6

sbatch . 89
sbatchd 2, 5, 6, 30, 40, 85, 89
sbatchd.log.hostname file 240
scheduling

exclusive . 32
fairshare . 31
���
host partition 199, 207, 222
loadSched 216
loadStop 216
migration of rerunable jobs 38
PREEMPTABLE 223
preemptable 32
preemptive 32
RES_REQ . 213
RESUME_COND 215
STOP_COND 215

scheduling condition 24, 25
scheduling jobs 212
scheduling priority 208
scheduling threshold 24, 216
script

lsfsnmpd . 290
security . 12

/etc/hosts.equiv and .rhosts
172

remote access as root 170
user authentication 14, 164

server status closed 83
setuid permissions 10, 164, 242
setuid root . 13
shared files . 240
shared resource . 9
sharing hosts . 206
short queue example. 138
SIGCONT . 38, 97
SIGKILL . 38, 97
signals . 97
SIGSTOP . 38, 97
SIGTERM . 97
SIGTSTP . 97
SIGXCPU . 217
Simple Network Management Protocol

(SNMP) 289
SNMP (Simple Network Management

Protocol) 289
snmpd binary file 290

snmpd.conf file 292
snmpd.log file . 290
software licenses

counted . 131
DEMO . 72
FLEXlm . 72
floating . 132
host locked 131
permanent . 72
updating . 75

special user names
others

default 114
SSUSP . 26
SSUSP batch job state. 22
START . 42
Starting LSF on Windows NT. 286
static resources . 9
status

of hosts . 101
of queues. 101

status closed in bhosts 83
STOP_COND . 112
submission host . 4
support . xv
SUSPEND . 108, 109
suspending condition 33
suspending thresholds. 33, 111, 216
syscontact. 292
sysinfo . 267
syslocation . 292
syslog 45, 168, 239
System Administrator 269, 270
system management software 289

7

task . 3
task migration . 224
technical assistance. xv
/6)�%DWFK�$GPLQLVWUDWRU·V�*XLGH
telephone numbers (Platform) xv
temporary directory

/tmp on UNIX. 280
C:\temp on NT 280

termination time 212
thresholds

host . 24
queue . 24
scheduling and suspending 111

time window . 8
time-limited software license 72
/tmp directory 46, 168
/tmp_mnt directory 241
TNG Tivoli TME 10. 289
traps (SNMP) . 292
tuning

busy thresholds 69
LSF Batch. 108

8

uid . 11
UJOB_LIMIT . 29
UNIX/NT user groups 198
User . 26
user authentication 10

eauth . 14
ident . 14

user directories . 7
user groups. 116
user job slot limits 26
user names 237, 272
user_auth_data 12
user_auth_data_len 12
USER_SHARES 114, 117
username . 11
Using LSF on Windows NT 287
USRCMD . 227
USUSP . 26, 35
USUSP batch job state 22
���

,QGH[
ut
CPU utilization 111

ut load index . 111

9

vendor daemon. 73
vertical configuration section 53

:

WINDIR environment variable 128

;

xbsub . 17
xlsadmin . 99
xlsmon . 47
���

	Preface
	Audience
	LSF Suite 3.2
	LSF Enterprise Edition
	LSF Standard Edition

	Related Documents
	Online Documentation

	Technical Assistance

	1. LSF Batch Concepts
	LSF Base
	LSF Batch
	LSF MultiCluster
	Definitions
	Jobs, Tasks, and Commands
	Hosts, Machines, and Computers
	Clusters
	Local and Remote Hosts
	Submission, Master, and Execution Hosts

	Fault Tolerance
	Shared Directories and Files
	Shared User Directories
	Executables and the PATH Environment Variable
	Time Windows

	Resource and Resource Requirements
	Shared Resources

	Remote Execution Control
	User Authentication Methods
	External Authentication
	Security of LSF Authentication

	How LSF Chooses Authentication Methods
	Host Authentication Methods
	Trust LSF Host

	User Account Mapping

	Job Starters
	Command-Level Job Starters
	Queue-Level Job Starters

	Load Sharing with LSF Base
	How LSF Batch Schedules Jobs
	Job States
	Eligible Hosts
	Dispatch Windows
	Run Windows
	Resource Requirements
	Host Lists
	Host Load Levels
	Order of Job Dispatching
	Job Slot Limits
	User Job Slot Limits
	Host Job Slot Limits
	Queue Job Slot Limits
	Resource Limits and Resource Usage
	Scheduling Policies
	Fairshare in Queues
	Fairshare in Host Partitions
	Hierarchical Fairshare
	Preemptive Scheduling
	Exclusive Scheduling
	Processor Reservation and Backfilling

	Suspending Jobs
	Migration
	Special Cases

	Resuming Suspended Jobs
	User Suspended Jobs
	Interactive Batch Job Support

	Pre- and Post-execution Commands
	Checkpointing and Migration
	Job Migration

	Job Control Actions
	Resource Reservation
	Processor Reservation
	Remote File Access
	Job Requeue
	External Submission and Execution Executables
	External Load Indices and ELIM
	External Group Membership Definition

	2. Managing LSF Base
	Managing Error Logs
	LSF Daemon Error Log
	FLEXlm Log

	Controlling LIM and RES Daemons
	Checking Host Status
	Restarting LIM and RES
	Remote Startup of LIM and RES
	Shutting down LIM and RES
	Locking and Unlocking Hosts

	Managing LSF Configuration
	Overview of LSF Configuration Files
	The lsf.conf File
	LIM Configuration Files
	The lsf.task File
	LSF Batch Configuration Files

	Configuration File Formats
	Example Configuration Files
	Changing LIM Configuration
	Adding a Host to a Cluster
	Removing Hosts From a Cluster
	Customizing Host Resources
	Configuring Resources in LSF Base
	Associating Resources with Hosts

	Reconfiguring an LSF Cluster
	External Resource Collection
	Restrictions
	Writing an External LIM
	Overriding Built-In Load Indices

	LIM Policies
	Tuning CPU Factors
	Tuning LIM Load Thresholds
	Cluster Monitoring with LSF
	LSF License Management
	How FLEXlm Works
	The License Server Daemon
	The License File
	License Management Utilities

	Updating an LSF License
	Changing the FLEXlm Server TCP Port
	Modifying LSF Products and Licensing
	Selected Hosts

	3. Managing LSF Batch
	Managing LSF Batch Logs
	LSF Batch Accounting Log
	LSF Batch Event Log

	Duplicate Event Logging
	Configuring Duplicate Event Logging
	How Duplicate Event Logging Works
	Failure of File Server
	Failure of First Master Host
	Recovery of First Master Host

	Controlling LSF Batch Servers
	LSF Batch System Status
	Remote Start-up of sbatchd
	Restarting sbatchd
	Shutting Down LSF Batch Daemons
	Opening and Closing of Batch Server Hosts

	Controlling LSF Batch Queues
	bqueues — Queue Status
	Opening and Closing Queues
	Activating and Inactivating Queues

	Managing LSF Batch Configuration
	Adding a Batch Server Host
	Removing a Batch Server Host
	Adding a Batch Queue
	Removing a Batch Queue

	Validating Job Submissions
	Controlling LSF Batch Jobs
	Moving Jobs — bswitch, btop, and bbot
	Signalling Jobs — bstop, bresume, and bkill

	Forcing Job Execution — brun -f
	Managing an LSF Cluster Using xlsadmin
	xlsadmin Management Mode
	xlsadmin Configuration Mode

	4. Tuning LSF Batch
	Tuning LSF Batch
	Controlling Interference via Load Conditions
	Paging Rate (pg)
	Interactive Idle Time (it)
	CPU Run Queue Length (r15s, r1m, r15m)
	CPU Utilization (ut)

	Understanding Suspended Jobs
	Controlling Fairshare
	Favouring Critical Users
	Sharing Hosts Between Two Groups
	Round-Robin Scheduling

	Hierarchical Fairshare
	Configuring Hierarchical Fairshare

	Understanding How Fairshare Works
	Job Dispatching According to Fairshare

	Limits and Windows
	Dispatch and Run Windows
	Controlling Job Slot Limits
	Resource Limits

	Reservation Based Scheduling
	Resource Reservation
	Processor Reservation and Backfilling

	Controlling Job Execution
	Understanding Job Execution Environment
	NICE Value
	Pre-execution and Post-execution commands
	Queue-Level Job Starters

	Using Licensed Software with LSF Batch
	Host Locked Licenses
	Host Locked Counted Licenses
	Floating Licenses
	All Licenses Used Through LSF Batch
	Licenses Used Outside of LSF Batch

	Example LSF Batch Configuration Files
	Example Queues
	Idle Queue
	Owners Queue
	Night Queue
	License Queue
	Short Queue
	Front End Queue
	NQS Forward Queue

	Example lsb.hosts file

	5. Managing LSF MultiCluster
	What is LSF MultiCluster?
	Enabling MultiCluster Functionalities
	The lsf.shared File
	The lsf.cluster.cluster File
	CACHE_INTERVAL
	EQUIV
	RECV_FROM
	Example

	Root Access

	LSF Batch Configuration
	Remote-Only MultiCluster Queues

	Inter-cluster Load and Host Information Sharing
	Running Interactive Jobs on Remote Clusters
	Distributing Batch Jobs Across Clusters
	bclusters
	bqueues
	bjobs
	bhosts
	bhist

	Account Mapping Between Clusters
	User Level Account Mapping
	Example #1
	Example #2
	Example #3

	System Level Account Mapping
	Example #1
	Example #2

	6. LSF Base Configuration Reference
	The lsf.conf File
	LSB_CONFDIR
	LSB_DEBUG
	LSB_MAILPROG
	LSB_MAILTO
	LSB_SHAREDIR
	LSF_AFS_CELLNAME
	LSB_LOCALDIR
	LSF_AUTH
	LSF_EAUTH_KEY
	LSF_BINDIR
	LSF_CONFDIR
	LSF_CROSS_UNIX_NT
	LSF_ECHKPNTDIR
	LSF_ENVDIR
	LSF_INCLUDEDIR
	LSF_INDEP
	LSF_LIBDIR
	LSF_LICENSE_FILE
	LSF_LIM_DEBUG
	LSF_LIM_PORT, LSF_RES_PORT, LSB_MBD_PORT, LSB_SBD_...
	LSF_LOGDIR
	LSF_LOG_MASK
	LSF_MACHDEP
	LSF_MISC
	LSF_RES_ACCT
	LSF_RES_ACCTDIR
	LSF_RES_DEBUG
	LSF_SERVERDIR
	LSF_SERVER_HOSTS
	LSF_STRIP_DOMAIN
	LSF_RES_RLIMIT_UNLIM

	The lsf.shared File
	Clusters
	Host Types
	Host Models
	Resources

	The lsf.cluster.cluster File
	Parameters
	PRODUCTS
	ELIMARGS
	EXINTERVAL
	ELIM_POLL_INTERVAL
	HOST_INACTIVITY_LIMIT
	MASTER_INACTIVITY_LIMIT
	PROBE_TIMEOUT
	RETRY_LIMIT

	LSF Administrators
	Hosts
	Descriptive Fields
	Threshold Fields

	Resource Map
	The lsf.task and lsf.task.cluster Files
	The hosts File
	The lsf.sudoers File

	7. LSF Batch Configuration Reference
	The lsb.params File
	Parameters
	Handling Cray NQS Incompatibilities

	The lsb.users File
	UNIX/NT User Groups
	Limitations

	LSF Batch User Groups
	Share Tree Defined in User Groups
	External User Groups
	User and Group Job Slot Limits

	The lsb.hosts File
	Host Section
	Host Groups
	External Host Groups
	Host Partitions

	The lsb.queues File
	General Parameters
	Processor Reservation for Parallel Jobs
	Backfill Scheduling
	Restrictions

	Deadline Constraint Scheduling
	Flexible Expressions for Queue Scheduling
	Queue-Level Resource Requirement
	Queue Level Resource Reservation
	Suspending Condition
	Resume Condition

	Load Thresholds
	Resource Limits
	Eligible Hosts and Users
	Scheduling Policy
	Queue Level Fairshare
	Preemptive Scheduling
	Exclusive Queue

	Migration
	Queue-Level Pre-/Post-Execution Commands
	Pre-/Post-Execution Command Setup

	Job Starter
	Configurable Job Control Actions
	Automatic Job Requeue
	Exclusive Job Requeue
	Default Host Specification for CPU Speed Scaling
	NQS Forward Queues

	Queue Level Checkpoint and Rerun
	Syntax
	Example

	The lsb.nqsmaps File
	Hosts
	Users

	A. Troubleshooting and Error Messages
	Error Log Messages
	Finding the Error Logs

	Shared File Access
	Shared Files Across UNIX and NT

	Common LSF Base Problems
	LIM Dies Quietly
	LIM Unavailable
	RES Does Not Start
	User Permission Denied
	Non-uniform File Name Space

	Common LSF Batch Problems
	Batch Daemons Die Quietly
	sbatchd Starts But mbatchd Does Not
	Host Not Used By LSF Batch

	Error Messages
	General Errors
	Configuration Errors
	LIM Messages
	RES Messages
	LSF Batch Messages

	B. LSF Directories
	C. Sample System Support
	IRIX 6 Processor Sets
	Time-Based Processor Allocation
	User-Based Processor Allocation
	Other Situations

	Support for Solaris Processor Sets
	Time-Based Processor Allocation
	User-Based Processor Allocation
	Other Situations

	IBM SP-2 Support
	Support for HP Exemplar Technical Servers
	Adding Load Indices Definitions
	Adding Queue Definitions

	Configuring NQS Interoperation
	Registering LSF with NQS
	Hosts
	Users

	lsb.nqsmaps
	Hosts
	User Name Mapping

	Configuring Queues for NQS jobs
	Handling Cray NQS Incompatibilities

	Support for Atria ClearCase
	Using LSF Without Shared File Systems

	D. LSF on Windows NT
	Requirements
	Recommended

	Differences Between LSF for UNIX and NT
	File Permissions
	Mail
	The cmd.exe Program
	Heterogeneous NT/UNIX Environments
	User Accounts
	Configuration Files
	Environment Variables
	Cross-Platform Daemon Startup
	Signal Conversion
	Custom Signal Conversion

	Starting Services and Daemons
	Using LSF
	Miscellaneous

	E. The LSF SNMP Agent
	About the Agent
	Requirements
	Distribution

	Starting the Agent
	Structure of the LSF MIB
	The lsfHosts MIB Group
	The lsfResources MIB Group
	The lsfBatch MIB Group

	Optional Configuration of the Agent

	Index

